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1  Introduction 

1.1 Problem Statement 

Learning systems, specifically neural networks trained 

using supervised learning, have become widely accepted and in 

many cases they provide good approximations for, the given 

input. However, neural networks are still often seen as a 

"black box" which contains many variables that must be 

manipulated to achieve the right conditions for good output. 

To make matters worse, small deviations in the type or degree 

of the data may call for an entirely new set of parameters 

for acceptable output. 

One of the parameters that tends to make a large 

difference in the output of the network is the size, or 

number of units that comprise the network.  In multi-layer 

perceptron architectures this factor decides how much 

representational power the network has, including the maximum 

state space dimension that can be represented.  In other 

types of networks such as radial basis and basis/influence 

networks, the number of units limit the portion of the state 

space that can be learned and the granularity of the state 

space representation. One way to eliminate this problem is 

to ensure that the network has more than enough units to 

represent the state space. How can this be determined? 

Heuristics can be formed based on various factors of the 

input data, but then we are back to an ad hoc  solution that 

we cannot be sure is optimal. Additionally, if it does prove 
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to be correct, how can we be sure that it is efficient? A 

large number of unnecessary units can seriously affect 

performance and in some cases, could lead to memorization and 

bad generalization of the data. 

An intelligent way to combat this problem of network 

size is through a variable structure algorithm. Variable 

structure basically means that in the course of learning the 

data, the network also learns the best way to organize itself 

to represent the data.  Thus the number of units and the 

structure of those units will be driven by the 

characteristics of the data. Variable structure needs to be 

differentiated from self-organizing structure.  Self- 

organization models, such as Kohonen networks and others that 

use competitive learning have the ability to alter their 

structure according to the data received [8]. The difference 

is that they still have an initial network size and only have 

the faculties to change what they are originally given. They 

do not have the means to add new units as required by the 

data. Thus a variable structure algorithm has the potential 

to start from nothing and build the correct network size and 

structure for the given data. 

Wavelets provide several properties that make the 

construction of a variable structure algorithm approachable. 

Wavelets are not new in the scientific community but they are 

relatively new to the field of artificial intelligence and 

especially neural networks. Wavelets allow good localization 

in both the spatial and frequency domains meaning that they 
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are useful in both local and global prediction. The class of 

wavelets explored in this thesis are from the family of 

orthonormal wavelets.  Orthonormality implies that there is 

no redundancy in the information stored by these wavelets. 

This creates stand-alone basis units that can be added or 

removed without affecting their counterparts, lending 

themselves to additive types of variable structure.  It also 

means that the data is stored in an efficient manner. 

Since wavelets have such a simple construction, the 

available training methods are diverse.  They range from 

backpropagation to Least Squares methods.  This thesis uses 

the method of Recursive Least Squares (RLS) to train units. 

RLS offers an optimal solution for the data it has seen.  It 

also offers nice properties like delayed computation, on-line 

training, easy overlapping of units, and it only requires one 

pass through the data. 

Using orthonormal wavelets and RLS together allows for 

the creation of a hierarchical, multiresolution network that 

facilitates variable structure. Of course, there is a 

tradeoff for the additional feature of variable structure. 

It comes in the form of more algorithm complexity. 

Performance drops as the algorithm is forced to keep track of 

more data and learn things other than the data state space. 

To be useful the performance loss needs to be minimal. 

Therefore the challenge of this thesis is to create a 

variable structure network based on orthonormal wavelets 
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which maintains the above properties while being fast and 

efficient. 

The efficiency and performance of this variable 

structure wavelet network will be judged through 

representative multi-dimensional problems. 

1.2 Thesis Overview 

This thesis begins with background information in 

Chapter 2. The information provided is presented as a 

tutorial on the concepts that the algorithm will employ in 

subsequent chapters.  Section 2.1 starts with simple 

wavelets, transitions to orthogonal wavelets and then gives 

specific examples. A multiresolution structure is introduced 

in Section 2.2 and its advantages are discussed. Next, the 

options for network training algorithms are presented and 

critiqued. Finally, Section 2.4 looks at how other 

researchers have put together learning networks with the 

above components. 

Chapters 3 and 4 constitute the real "meat" of the 

thesis by presenting our variable structure algorithm. In 

Chapter 3, we present a very basic algorithm consisting of 

many of the items discussed in the previous chapter. Section 

3.1 starts with an introductory, one-dimensional algorithm 

that can be built upon in later sections. The next Section 

modifies the simple algorithm to implement a basic form of 

variable structure. Finally, Section 3.3 looks at a variety 

of enhancements that can be added to the simple variable 
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structure algorithm to both optimize it and tailor it to the 

needs of the user. 

Our one-dimensional network is expanded in Chapter 4. 

Section 4.1 makes the requisite modifications to allow the 

network to be used with multiple inputs. Multiple outputs 

are added in Section 4.2 and two different methods for 

dealing with them are presented.  The next Section delves 

into the "curse of dimensionality" and talks about the 

disadvantages of our network in multi-dimension space. The 

final section in Chapter 4 shows some multi-dimensional 

results. 

At the conclusion of Chapter 4 our variable structure 

algorithm has been presented in its entirety. Thus far only 

simple approximations necessary to explain the concepts have 

been shown. The next step is to prove its usefulness on some 

real applications and see what the results are. Chapter 5 

discusses these experiments in detail. Finally, Chapter 6 

summarizes the work in this thesis and gives recommendations 

for future research. 

15 
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2  Background 
2.1 Wavelets 

Wavelets are the foundation of the work in this thesis, 

so it is necessary to talk about them in some detail. A 

wavelet is  a local mathematical function that can represent 

data according to the components of its frequency.    They are 

represented with the notation ^(x), with a and b being 

coefficients, and x being the independent variable. Wavelets 

began as pure mathematical tools but now they have been 

absorbed into many disciplines and are being used for 

everything from human vision and image analysis to 

fingerprint compression [6]. My work takes place in the 

context of using wavelet basis functions to approximate a 

function in a variable structure neural network.  I chose to 

use wavelets because their attributes mesh nicely with this 

type of algorithm. 

There are a large number of different wavelet functions. 

Some categories are smooth wavelets, orthogonal wavelets, 

wavelets with compact support, etc. However, some attributes 

are common to all varieties. Wavelets are unique because 

they provide good approximating capability in both space and 

frequency. This is due to their ability to change their 

shape and size according to the application. In addition to 

this, many wavelets are easy to create and modify, making 

them very easy to use. It has also been shown that wavelets 

can represent many types of functions much more efficiently 

than other methods such as Fourier analysis [11]. This can 
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be even further improved by choosing wavelets particularly 

suited for the type of function being represented, such as 

smooth, continuous wavelets for a smooth function.  Pruning, 

or thresholding wavelets have also been used to give good, 

concise, representations. Of course, individual types of 

wavelets provide their own benefits as well. 

2.1.1 General Wavelets 

The simplest wavelet available is any function that is 

half above and half below the input plane (has a zero mean). 

Stated mathematically: 

jVab(x)dx = 0 (2.1) 

0.8 

0.6 - 

0.4 

0.2 - 

-0.2 

-0.4 

•0.6 

-0.8 
-2 

Figure 2.1   A Sample Wavelet Function, x¥ = -xe~x*il 
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Wavelets are typically represented in terms of a Mother 

Wavelet  [5], 

**(*)-|flT^^) (2.2) 

where 

a = dilation coefficient 

b = translation coefficient 

The dilation coefficient, a, indicates how much the wavelet 

is compressed or stretched. This determines the size of the 

wavelet's support. The translation coefficient, b, displaces 

the wavelet to the desired position. By varying these 

coefficients, an infinite set of basis functions can be 

generated from which to construct more complex functions. 

Due to this, (2.2) is coined the Mother Wavelet. 

Although we are using a simple wavelet, the transform 

for representing a function with wavelets, i.e. computing 

coefficients for the basis functions, is not necessarily 

simple. One way of doing this is the Continuous Wavelet 

Transform: 

coeff (a, b) = J f (x)^ (x)dx (2.3) 

where 

f(x) = function to approximate 

Looking at (2.3), we see that the input function is being 

projected onto every instance of the Mother Wavelet. This 

gives us an infinite number of wavelet coefficients. Of 

course much of the information recorded by these coefficients 
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is redundant since each wavelet is only infinitesimally 

different from its neighbors.  This oversampling is necessary 

because there is no way to determine the dependencies Of 

simple wavelets. Therefore, every combination must be tried. 

This is the opposite of an orthogonal transform, where there 

are no dependencies. 

The continuous wavelet transform gives a perfect 

reconstruction of the input function, but it is only useful 

in a mathematical sense. In practical applications it is 

often discretized, trading increased efficiency for a lower 

quality function approximation.  It is often used for 

recognizing signal characteristics, but it is still much too 

slow and inefficient for a variable structure algorithm. 

Since Fourier Analysis is a more familiar approach, it 

might be helpful to point out the similarities and 

differences between the two methods. First, both use basis 

functions to approximate. Wavelets are analogous to the 

sines and cosines of the Fourier transform and the Fourier 

series can be compared to the wavelet coefficients. Also, 

both transforms are linear and take into account both time 

and frequency. However, it is the differences that make 

wavelets desirable.   Equation 2.4 contrasts the equation 

for a Windowed Fourier Transform with that of a Wavelet 

Transform [9]. 

nx)£^-TKte vs. **(*)-IflT^i—)     (2.4) 
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Figure 2.2 Wavelet vs. Windowed Fourier Transform 
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Figure 2.2 is the graphical depiction of Equation 2.4 with 

each box being an individual basis function.  It shows the 

overriding difference between the two transforms:  the basis 

functions for the Windowed Fourier Transform remain constant 

in size with a changing frequency, (ö, while the scale 

frequency, a, of the wavelet basis functions controls' the 

size of the function. 

The support of a Fourier analysis is global and 

unbounded.  This indicates that it will be less effective at 

approximating discontinuities or sharp spikes, etc. Wavelets 

are localized in time which allow them to excel in these 

types of functions by creating small, high frequency wavelets 

to deal with them. Understandably this results in much fewer 

basis functions than in the Fourier case. This quality is 

what makes wavelets useful in compression and removing noise 

in functions. Wavelets are equally advantageous for lower 

frequency data since their ability to dilate also makes them 

local in frequency. By utilizing both of these advantages, a 

wavelet based system can approximate by using small, high 

frequency wavelets for local features and large, low 

frequency wavelets for the more global features. Figure 2.3 

shows a function approximated using relatively low frequency 

wavelets and then approximated again with the addition of 

high frequency wavelets. It is clear that the low frequency 

wavelets provide a general view of the function while the 
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additional high frequency wavelets flesh out the 

approximation. 

2.1.2 Orthogonal Wavelets 

The discovery of orthogonal wavelets is a main reason 

that wavelets are so prominent today.  In this case, two 

wavelets are orthogonal if their inner product -is equal to 

zero.  In equation form: 

<W^(x),   Ya.b,(x)> = /^(x)   Wa,b.(x)  dx  = 0 (2.5) 

where 

a#a'  or b£b' 

Orthogonal wavelets also have another orthogonal function 

associated with them called the father, or scaling function. 

The name is misleading since the function can be derived from 

the mother wavelet, but the scaling function provides the 

wavelet functions with a bias value to be used during 

approximation. Remembering that the definition of wavelets 

implies that they have a zero mean, it is apparent why a 

scaling function is necessary for approximation.  Scaling 

functions will be covered in more detail in section 2.2. The 

wavelet and scaling functions define an orthogonal basis, 

meaning that any function can be composed of a linear 

combination of these orthogonal basis functions [11]. 

Early in the development of wavelet theory, the 

mathematics of wavelets were understood, but their 

application was extremely slow and inefficient. Orthogonal 

wavelets remedied this because the computation of the 
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coefficient for any wavelet is independent of any other 

computations.  Essentially, each basis function can be de- 

coupled from the rest. The mapping between the inputs and an 

orthogonal basis is simple.  If we assume a one input, one 

output function to be learned, the mapping is: 

f(x)   = Z, c&ix) (2.6) 

where 

f = output 

i = wavelet number 

ct  = wavelet coefficient (unknown) 

©i = wavelet evaluated at the input 

This equation indicates that the function is equal to the sum 

of the wavelets at the given points, multiplied by their 

weights.  In other words, this is the definition of a basis 

function approximation. Assuming in input/output points and n 

wavelets, we can put the right hand side into matrix form by 

making a vector of coefficients of size n  and a matrix of 

size m x n  in which every input is evaluated at every 

wavelet. Using this new matrix form we get: 

AW - ®»(*«)J \?*J 

or f(x)  = Ac (2.7) 

Now all that is necessary is to solve for c. 

£ = A-*£ (x) (2.8) 
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Since A will not always be invertible, we need a generalized 

inverse giving us: 

£ = A+f(z)  or (A^'W   (using Least Squares)   (2.9) 

This gives us the optimal coefficients for all n wavelets 

being used to approximate f(x) assuming a large amount of 

regularly spaced input [1].  It is apparent that this is much 

easier than the continuous wavelet transform. Of course, for 

a large amount of data and a large number of wavelets, this 

approach becomes unworkable because of the size of the 

components. Techniques such as multiresolution (covered in 

Section 2.3) must then be used to break the computations up 

without sacrificing accuracy. 

In a neural network structure, orthogonality means that 

we can have autonomous units that can be added or removed 

without affecting the other units. By being independent, 

these wavelets also have the advantage of allowing no 

redundancy in the storage of information. This contrasts 

with the continuous wavelet transform which required infinite 

redundancy. While the lack of redundancy is not desired in 

some disciplines, it is a great boon for the work in this 

thesis since we are looking for an efficient network 

structure. There are a plethora of orthogonal wavelets to 

choose from. The two used in this thesis are the Haar 

wavelet and the Mexican Hat wavelet. 
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2.1.2.1 The Haar Wavelet 

The Haar wavelet is the simplest orthogonal wavelet.  It 

is a piece-wise constant function that is defined as having 

the value 1 on the half-open interval [0,1/2) and the value 

-1 on the half-open interval [1/2, 1). 

2 
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Figure 2.4 The Haar Wavelet and Scaling Function 

It has been proven that any continuous function can be 

approximated to arbitrary accuracy by Haar wavelets given an 

unlimited number of wavelets of varying locations and 

frequencies [11]. 

Haar wavelets are the most computationally efficient of 

the orthogonal wavelets to date. Since they are a square 

function, it is easy to compute their values at the inputs. 
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The Haar scaling function is simple, being defined as having 

the value 1 on the half-open interval [0,1).  Finally, Haar 

wavelets have compact support. Thus they do not require 

overlap as many other wavelets do.  This results in a large 

savings of time and space since interactions between 

overlapping wavelets do not have to be computed. 

In order to prevent confusion, it needs to be said that 

interactions between wavelets can occur while still retaining 

orthogonality. Wavelet orthogonality simply indicates that 

if you remove an orthogonal wavelet, information is lost that 

no other wavelet can compensate for. Therefore, the 

coefficients of the remaining wavelets will be unchanged. 

Even though the Haar wavelet can approximate any 

continuous function, many researchers have found it not to be 

very natural in this mode [11]. Instead, they prefer to use 

smooth basis functions that may be able to approximate the 

smoothness of the function as well as the actual values. The 

Mexican Hat wavelet is one of these and is covered in the 

next section. Often the Haar function is relegated to 

Boolean type functions.  In my work I have found the 

piecewise-constant Haar wavelet to approximate smooth 

functions almost as well as smooth basis functions. This 

fact coupled with the impressive savings in computation time 

makes Haar wavelets my first choice of basis function in this 

thesis. 
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2.1.2.2 The Mexican Hat Wavelet 

The Mexican Hat function gets its name from it shape. It 

was discovered by the field of vision analysis and it is 

still in use today. The wavelet equation is 

*(*) = ^7C-y\l-x2)e-xl/2 (2.10) . 
-v/3 

This equation is the second derivative of the Gaussian 

function, e'xl/2,  normalized so that its L2 norm is equal to 1 

[4]. 

Mexican Wavelet Function Mexican Hat Scaling Function 

Figure 2.5   The Mexican Hat Wavelet and Scaling Function 

I chose to use the Mexican Hat wavelet for several 

reasons. First, it is easy to compute. While the equation 

is somewhat lengthy, it is much more desirable than many 

other wavelets which must be computed by the iteration method 

[4]. The ease of computation also applies in the case of the 
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wavelet's scaling function, which is simply the Gaussian. 

The Mexican Hat wavelet is smooth, which should allow it to 

approximate and generalize smooth functions easier [11]. 

This idea is illustrated in the fact that vision analysis 

cannot use the Haar wavelet due to artifacts caused by its 

discontinuities that are left in the reconstruction. Thus it 

is included in this thesis because it is one of the more 

computationally efficient wavelets to construct and it should 

provide a good measure against which to judge the performance 

of the Haar wavelet. The Mexican Hat is a wavelet function 

that requires the basis functions to overlap. This results 

in a significant performance drop when compared to wavelets 

such as the Haar function.  So what we are interested in is 

if the Mexican Hat approximation is good enough to compensate 

for this decrease in efficiency. 

2.1.3 Orthogonal Wavelets in Multiple Dimensions 

So far, we have only been discussing wavelets of one 

dimension. These wavelets are useful for a one input 

network, but little else. Since most applications require 

several input variables, multi-dimensional wavelets are a 

necessity.  Luckily, orthogonal wavelets are easily extended 

to any dimension. 

Extension to a n-dimensional basis begins with the one 

dimensional mother wavelet and scaling function. The basis 

is found by taking the tensor products of the n-1 dimensional 

basis with the one dimensional mother wavelet and scaling 
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function [5] . As an example, when expanding to two 

dimensions the resulting equations for the basis will be: 

Given ¥(x), $(x) : 

OCx,) ¥(x2) 
0(x,) GfcXKx,) ^»(xO^x^) 

Y(x,) ¥(x,)0(x2) 
xF(x1)^(x2) 

Scaling Function : <S>(xlx2) = &(xl)®(x2) (2.11) 

Wavelets: 

f(W) = <D^mJC2) (2.12) 

Y2(^2) = ^(x1)OU2) 

>P3(W) = ^)^2) 

This technique will expand any orthonormal wavelet basis to 

any dimension. An excellent proof of this can be found in 

Daubechies' paper [5]. 

From the method above it follows that the number of 

wavelets increases exponentially with the dimension. For 

dimension d, there will be 2*-l  wavelets and one scaling 

function. The scaling function is just the tensor product of 

the n  original scaling functions while the wavelets are the 

combinations of n products of the scaling and wavelet bases. 

These additional wavelets correspond to the different 

orientations of the wavelet in that dimension that are 

necessary for the basis to completely span the function 

space. However, this is not as much of a limitation as it 

appears to be. It is often not necessary for every wavelet 

in the basis to be used in a specific approximation. A 
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variable structure algorithm can be employed to only activate 

the wavelets that are necessary for the approximation. This 

is often significantly less than the total number of 

available wavelets. 

2.2 Multiresolution 

Multiresolution is a decomposition technique which 

allows  a hierarchical representation of a set of inputs.     The 

input is decomposed into different resolutions,   each at a 

different scale,  and is represented by the difference of 

information between each scale.    Multiresolution was derived 

from multiscale algorithms used in machine vision and image 

processing.  These methods analyzed signals at different 

resolutions taking advantage of the fact that images tend to 

show different things depending on the resolution they are 

viewed at. However, the methods were confined to a small 

number of fields due to their inefficiency.  Since there was 

no way to isolate the information in one resolution from the 

information in the other resolutions they tended to be very 

redundant. 

Wavelets seemed to be a logical choice for a better 

implementation of multiresolution since they are adept at 

recording differences. The dilating characteristics of the 

wavelets allow some to grow large to adapt to low frequencies 

and some to contract to capture the high frequencies. As the 

wavelets get smaller and smaller, they capture the image at 

smaller and smaller resolutions. Of course, ordinary 
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wavelets do little for the efficiency issue since they also 

record redundant information. Orthogonal wavelets were 

needed to eliminate this redundancy.  Once they were 

discovered it quickly became apparent that the two ideas of 

orthogonality and multiscale were well suited to each other. 

The first fast, efficient method for determining a wavelet 

decomposition of a function soon followed and it was dubbed 

multiresolution analysis [10]. 

As we know, orthogonality implies that each wavelet 

coefficient is completely independent of any other 

coefficients in the analysis. This means that in any 

function decomposition, each wavelet encodes a portion of the 

function that no other wavelet does. Mallat presented his 

multiresolution algorithm as a sequential progression from 

the finest details to the coarsest (from the smallest dilated 

wavelets to the largest) but this is not the only way it can 

be performed [10].  Since the wavelets only encode specific 

portions, multiresolution can also be done from coarse to 

fine, which is much more amenable to implementation within a 

variable structure network like the one presented in a later 

chapter. 

Wavelets are most adept at representing details, or the 

changes from one representation to another. In order to 

allow them to just concentrate on these details, another 

function is necessary to record the general trends of the 

function. This entity is the scaling function. The scaling 

function is basically "chosen to satisfy continuity, 
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smoothness, and tail requirements" of the chosen wavelet 

[11].  It basically gives the analysis a place to start out 

from, or bias, by roughly approximating the given function. 

An interesting thing about the scaling function is that it 

can be created from the mother wavelet [6].  So for 

multiresolution analysis, all that is needed is the choice of 

one mother wavelet and the rest can be calculated from there. 

It is easy to see the simplicity that makes this type of 

analysis so intuitively pleasing. 

After the mother wavelet is chosen and the scaling 

function is determined, the next step in the altered version 

of multiresolution analysis is to choose how coarse of a 

representation is necessary. This determines how large the 

scaling and wavelet functions will be that the representation 

will start out with.  In this step it is easy to see why we 

want to go from coarse to fine since in Mallat's algorithm it 

is necessary to choose how fine  a resolution is necessary 

which is exactly what a variable structure algorithm is 

trying to determine! Now the signal is divided into two 

portions: a smoothed, generalized portion and the remainder 

of the function which I will call the details.    The smoothed 

portion is provided by the scaling function and the wavelets 

encode the details. 

At the next iteration of the algorithm we have a 

representation of the original function but it may still be 

rough since the wavelets at that level are large (equal to 

the coarseness chosen) and thus only the details of that size 
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were encoded. Therefore it is necessary to add smaller 

wavelets. The next level of wavelets consists of double the 

number of wavelets that are half as wide.  This allows them 

to fit into the same area as the previous level's wavelets as 

shown in Figure 2.6. 

Fine 

Coarse 

Figure 2.6  Multiresolution Wavelet Analysis 

With each successive iteration after the first, the 

general portion will be the previous approximation (the 

scaling function plus the wavelets) and the new wavelets will 

be used to encode as much of the difference between that 

approximation and the actual function as possible. The 

process of adding twice as many wavelets at each successive 

resolution level continues until the function is represented 

to some specified level. Each successive level of resolution 

brings the approximation closer to the original function. 
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The number of wavelets are doubled each time to stay 

consistent with the Shannon sampling theorem which states 

that a signal must be sampled at twice its frequency. As the 

frequency is increased, the number of samples, or wavelet 

coefficients must be doubled. At the end of the process, we 

are left with a scaling function coefficient from the 

coarsest pass and a hierarchy of wavelet coefficients. 

Looking at this, we see that the smoothed function could 

also be represented as the low frequency data of the function 

and the details could be the high frequency data. This 

brings about the idea of using filters. The scaling function 

is a low pass filter and the wavelets constitute various band 

pass filters. Each level of the multiresolution analysis now 

has its own pair of filters. Whatever one blocks, the other 

allows (at that resolution). At each iteration, the 

frequency of the band pass filter is doubled and convolved 

with the remainder of the input data from the previous 

filters, resulting in the new set of coefficients for that 

resolution. Of course, using filters eliminates the need for 

wavelets altogether. I don't use this implementation, but it 

is one more perspective on multiresolution analysis and many 

have suggested that it could make the technique very fast if 

implemented in hardware [6] . 

Multiresolution provides a very good model for variable 

structure learning using wavelets.  It has inherent 

flexibility in that it does not depend on any specific 

wavelet. It is also very fast and efficient. When used in 
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the coarse to fine framework, it provides the best 

representation of a function possible so far, at any time 

during the approximation. This is true because each 

resolution level just adds a little more accuracy to an 

already approximated function. This can be particularly 

helpful in time-critical applications where an approximation 

is given a certain time limit and it must present the best 

solution possible at that limit.  Perhaps the best attribute 

of this multiresolution method will become apparent in 

Chapter 3 when the actual variable structure algorithm is 

discussed. Multiresolution allows orthogonal wavelets to be 

chosen from any level, reassembled into the desired 

structure, and trained easily. 

2.3 Methods of Training 

It is important to note that multiresolution analysis 

has nothing to do with actually determining the coefficients 

of the set of wavelet basis functions.  Its purpose is to 

break the network calculations down into a computationally 

feasible manner that gives the same results as if a full 

wavelet transform were performed on the data. 

Multiresolution provides a structure for the wavelets that is 

independent of the training method. This is not to say that 

the training method is unimportant.  It just plays a 

different role. Training deals with optimization and data 

fitting. Given a specific structure, a training algorithm 

works to optimize the structure's parameters. In the 
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subsequent sections I have chosen to present the two most 

common ways to train wavelet networks, Gradient methods and 

Least Squares, as well as Recursive Least Squares which is 

employed in this thesis. 

2.3.1 Gradient Methods 

Gradient methods have been a staple in neural networks 

since they were applied to multi-layer perceptrons in the 

1980's. The best way to understand them is through imagining 

an error surface like the one in Figure 2.7. 

0.7   0.8   0.9   1 

Figure 2.7  Error Surface 

If we let J be some measure of the total error and P be a 

space created by all of the adjustable parameters in the 

network, then Figure 2.7 is the error as a function of the 
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parameter values. On this surface there will be some set of 

parameter values which will give the minimum value for J, or 

the total error of the network. 

Of the many flavors of gradient descent algorithms, 

Steepest Descent is the simplest and most widely used. A 

gradient gives the direction of maximum increase of the 

function at that point.     It is basically the vector of the 

partial derivatives of y given x.  In our case the gradient 

is 3J/9P and it is shown on Figure 2.7. A Steepest Descent 

algorithm attempts to minimize J by finding the negative 

gradient (since we want the maximum decrease of J at the 

points P) and adjusting the parameters to go in that 

direction. Since it uses the negative gradient, a small 

change in that direction is likely to reduce the current 

error by the greatest amount. 

Backpropagation is a very popular method for computing 

network parameters using the gradient.  It provides us with a 

nice, general model for looking at how a gradient descent 

algorithm can be implemented. 

Backpropagation basically divides the calculation of the 

gradient on the error surface into components that each 

weight is responsible for [13]. The algorithm starts by 

taking the input vector and querying the current network for 

an output vector. This output is compared to the desired 

output, resulting in an error value. If let y* be the desired 

output, and y be the actual output, e = y   - y.    Usually in 
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this type of algorithm we are interested in the sum squared 

error (SSE) which can be represented as / = — |e| . 

At this point, backpropagation is used to assess the blame 

for the error.  This is done by using partial derivatives 

along with the chain rule. For example, if our function to 

approximate is y(x;p) = f(g(h(x;p)))  and we want to find the 

contribution of x to J, the equation would be: 

dJ_ 

dx 

dJdedydgdh 

p 
dedydgdhdx 

Once the we know how much x contributes to the error, it is 

possible to update the weights pertaining to x. The update 

rule is: 

Ax = -c3 (2.14) 
dx 

where 

a is the learning rate (typically small and positive) 

The learning rate is used to prevent large jumps along the 

gradient and allow a smooth traversal of the error surface. 

Thus backpropagation attempts to follow the gradient by 

continually changing the network coefficients according to 

how much of the error they caused. 

While gradient algorithms are an elegant way to update 

parameters, they have their difficulties. One problem is 

that they have a highly variable convergence time.  In 

general, it is difficult if not impossible to determine how 

many epochs, or passes through the data set, will be required 
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for the algorithm to converge to a local minimum. When 

coupled with the fact that reasonable outputs may not result 

until convergence, it is easy to see that this may not be the 

algorithm of choice for time intensive applications. 

Finally, gradient algorithms have the potential to converge 

to sub-optimal solutions corresponding to local- minima which 

can be significantly less accurate than the global minimum. 

Despite these problems, there has been some success achieved 

using gradient descent methods and wavelets (see Section 

2.4). However, these methods are not very amenable to the 

on-line, variable structure algorithm that I wish to develop. 

2.3.2 Least Squares 

Least Squares (LS) is a method for solving an 

overdetermined system of linear equations such that the L 

norm of the error is minimized.  "Overdetermined" means that 

we have more data than necessary to solve for the 

coefficients. Assuming m equations with n unknowns, m > n. 

The Least Squares solution is very basic.  If we have a 

system, Ax = b,  we want to minimize [Ax-if   [14] .  Solving 

this for x: 

x = {ATA)~lATb (2.15) 

where 

A is m x n 

x is n x 1 

b is m x 1 
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The easy method for finding wavelet coefficients in Section 

2.1.2 employs Least Squares. 

Least Squares has several benefits besides being easy 

to compute. Given a system of equations, Least Squares will 

provide the optimal solution.  It also allows input data to 

be weighted according to its reliability.  This is done by 

simply adding a weight matrix into the above equation [14]: 

x = (ATCA)~'ÄrCb (2.16) 

where 

C is WTW 

W is the weighting matrix containing a value for 

each error, e = b - Ax 

If the errors are independent, W will be a diagonal matrix. 

Otherwise it will also contain off-diagonal weights.  In the 

LS algorithm discussed before W is just the identity matrix. 

On the negative side, Least Squares is not particularly 

well suited to on-line training. The matrix A is created 

using the input data and any new data must be added by 

creating a new row. Thus, with a large amount of data, the 

matrix gets very large. Another problem is that every time 

the matrix A is updated, x must be solved for again when all 

that is needed is the change in x with respect to the new 

data. These problems are remedied with Recursive Least 

Squares. 
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2.3.3 Recursive Least Squares 

Recursive Least Squares (RLS) is a way to incrementally- 

solve a system using the Least Squares method. This is done 

by assuming the first estimate is optimal with respect to the 

data seen so far. As more data arrives, an update to the 

previous estimate is made to make the solution,optimal for 

all the data to that point. The information necessary to 

continue updating is saved in a covariance matrix, 

eliminating the need to save all previous measurements. This 

is akin to computing a running average by just saving the sum 

and the number of values so far. The RLS equations are [14]: 

if^Pti+AfjpA, (2.17) 

x, = xt_x + Kfä-AiX^) with K, = P$V? 

where 

P = covariance matrix of the input data 

V = covariance matrix of the input wnoise" or 

uncertainty 

A = information matrix 

x = coefficient vector 

b = observation, or output, vector 

2.3.3.1 Weighting Observations in RLS 

Like Least Squares, an important ability with RLS is 

that observations, or inputs, can be weighted. This is 

accomplished via the V matrix in Equation 2.17. Assuming 

every observation is independent, the V matrix will look 

like: 
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y = '21 

"'? 
i 

and  V'1 = ff» 

l 

•2. 

(2.18) 

Therefore the V matrix could be considered the amount of 

error, or noise, in each input while the V1 matrix is the 

weighting that each input will get in the RLS algorithm. 

If we take this a little further, we can develop age 

weighting.  In this case, we want each new input to have more 

weight than any of the previous inputs.  If we let X, 

0 < A, <1, be the discount factor that each previous input 

will get relative to the new input we get a V1 matrix like: 

\rl = 

X 

(2.19) 

Equation 2.19 tells us that every time a new input is added, 

the previous inputs are reduced again by the discount factor. 

In an on-line algorithm we don't want to have to deal with 

this V matrix so we can rewrite the first equation of 

Equation 2.17 to look like this: 
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In this recursive equation, the old covariance matrix of the 

input data is discounted by X  at every iteration. This is 

equivalent to Equation 2.17 using Equation 2.19 and it 

provides us with an easy way to perform age weighting on the 

input data. As a side note, RLS using data weighting is 

still learning the optimal solution. We have just changed 

the nature of the solution somewhat. RLS now learns the 

optimal solution given a particular weighting scheme. 

2.3.3.2 Summary of RLS 

RLS successfully eliminates many of the limitations of 

LS. The size of the covariance matrix is constant with 

respect to the input data in contrast to LS which requires an 

extra row for every input. When used with streams of data it 

is significantly more efficient since redundant calculations 

are avoided; it can solve for just the change in x with 

respect to the new data instead of solving the entire 

equation again like Least Squares. Both RLS and LS always 

give an optimal solution relative to the data they have seen. 

In contrast to gradient methods, it gives this solution by 

only making one pass through the data, whereas gradient 

methods require multiple epochs. 

Of course, RLS does have some potential problems as 

well. For a large number of unknowns, n, the covariance 

matrix, P, can be very large since the size of P is n x n. 

Thus in many cases a significant amount of storage space is a 

necessity. Additionally, the RLS equations require an 
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inverse of P which can be a large amount of computational 

work, especially if P is large. The ramifications of these 

factors can be reduced by breaking up the unknowns into 

smaller clusters (if independent) and by only calculating x 

periodically, reducing the number of inverses taken. These 

solutions along with the other positive attributes of RLS 

make it a very nice training algorithm for use in an on-line 

wavelet basis function network. 

2.4 Putting It All Together 

Before outlining our algorithm, it might be instructive 

to see how others have constructed wavelet networks. 

Zahn and Benveniste were working with wavelet neural 

networks as early as 1991 [16].  Their work in the area was 

successful and their papers have been widely distributed.  In 

their network, they use continuous wavelets in a multi-layer 

network structure trained by a stochastic gradient descent 

algorithm.  These choices drive the rest of their algorithm. 

The choice of continuous wavelets is a simple one. 

Since they are not using a structure which requires 

orthogonal wavelets (such as multiresolution) they have their 

pick of whatever wavelet base best fits their needs. Their 

choice of the multilayer network structure is a little more 

complicated.  It allows the algorithm to be compared to much 

of the neural network literature which are also constructed 

of the same multilayer structures. Additionally, by using 

gradient descent with a nonlinear feedforward network they 
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are basically performing nonlinear regression. This is well 

suited for continuous inputs and outputs, performs well with 

noisy data, and will find the best fit for its associated 

network structure.  In fact, Cybenko proves that a multi- 

layer network can represent any continuous function, if it 

has the correct number of hidden units [3]. 

The main drawback with this approach, and specifically 

with multi-layer networks, is that choosing the number of 

hidden units is not an easy problem.  Too many units result 

in bad generalization due to memorization of the data. Too 

few units can cause bad approximation since the network may 

not have the representational power needed to accurately 

approximate the input function. This is a difficult problem 

which is addressed in this thesis through a variable 

structure algorithm. Another problem with this structure is 

the inability to incorporate a priori  knowledge into this 

type of algorithm. This is due to the lack of transparency 

in the weights. Finally, multilayer networks used with 

gradient descent have the potential to converge to sub- 

optimal solutions (local minima) when their initial 

conditions are not set correctly. 

To get around many of these problems, Zahn and Beneviste 

used a complicated initialization phase. They used a fixed 

structure, but chose the wavelets in this structure by 

looking at an initial batch of data. This fixed the dilation 

and translation coefficients, leaving only the weights of the 

wavelets as adjustable parameters. They used a variety of 
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constraints on these adjustable parameters to try to prevent 

convergence to local minima. The algorithm was successful in 

that it was able to get the same results with significantly- 

fewer wavelets than a strict, fixed wavelet decomposition. 

However, the computational complexity of the algorithm was 

high, particularly in the initialization stage.  Also, there 

is no guarantee that the local minima will be avoided.  It 

does have the ability to incorporate a priori  information 

into its structure by choosing specific wavelets, but that 

structure is still fixed. This fixed structure implies that 

it may have problems adapting to new data that fall outside 

of the range of the initialization batch. 

Bakshi, Koulouris, and Stephanopoulos present an 

algorithm that is much closer to what this thesis deals with 

[8, 13]. Their network consists of orthonormal wavelets in a 

multiresolution structure. They chose the Least Squares 

method to train their wavelets. Using a multiresolution 

structure they perform variable structure based on the L" 

norm. They augment this variable structure by using the 

technique of cross-validation, in which the network is tested 

on previously unseen data and adjusted accordingly.  Pruning 

of wavelet basis functions is used in order to increase 

generalization. 

Overall, Bakshi, Koulouris and Stephanopoulos' algorithm 

is along the same lines as what this thesis is exploring with 

a few exceptions.  Their algorithm is not set up for on-line 

learning, limiting its usefulness. This is mainly due to the 
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cross-validation and pruning used, but also because LS isn't 

an efficient algorithm for on-line learning. Additionally, 

much of their success has come about using non-compactly 

supported orthogonal wavelets such as the Battle-Lemarie and 

the Mexican Hat wavelet [2]. While these wavelets 

approximate well, they tend to be much more inefficient than 

compactly supported orthogonal wavelets such as the Haar and 

Daubechies wavelets [5].  Finally, their work is almost 

completely confined to one dimensional wavelets. 

The two variations presented above were successes, but 

they leave much to be improved upon.  The purpose of this 

thesis is to build upon these ideas and create a wavelet 

based, fast, efficient, on-line variable structure algorithm 

that can be used in a multi-dimensional input space. 
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3     A 1-D Wavelet-Based Variable 
Structure Learning Algorithm 

While the purpose of this thesis is to present an 

algorithm for an n-dimensional wavelet-based variable 

structure algorithm, this section will deal with a simplified 

version of that concept. We will start with a one input, one 

output system, and build the design from there. This is a 

reasonable approach since the elements used in this version - 

will all be applicable to the n-dimensional case. 

Section 3.1 will begin with a specific structure taken 

from components described in Chapter 2: a multiresolution 

structure of Haar wavelets trained by Recursive Least 

Squares.  Specifics are used to simplify the discussion and 

facilitate the description of the algorithm.  Section 3.1.4 

will discuss changes to make the algorithm more general.  In 

Section 3.2 we will introduce variable structure elements 

into the algorithm, creating a bare bones version of the 

algorithm that will be used for the rest of this paper. 

Finally, in Section 3.3 enhancements and modifications to the 

algorithm will be discussed. 

3.1 The Basic Algorithm 

Now that we have the background information from Chapter 

2, it is finally time to put the components together and 

create a simple wavelet network. Figure 3.1 displays how 

this network will work. 
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Figure 3.1 Basic Algorithm Flow Chart 

Stage one uses the network organization to determine which 

wavelets are "hit" by the input vector (Section 3.1.1). A 

wavelet is hit if the input vector falls within its support. 

Stage two looks at the hit wavelets and determines what their 
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outputs will be for the given input (Section 3.1.2). This 

effectively gives us the network output for the input vector. 

We can then compute the error in the approximation.  Stage 

three takes the network output vector and the approximation 

error and trains the wavelets to better represent the input 

data (Section 3.1.3). 

3.1.1 Stage One: Finding the Hit Wavelets 

The goal of this algorithm is to construct the smallest, 

network possible while still approximating the input 

function. This is done by restricting the choice of wavelets 

(Haar in this case) to the bare minimum spatial and frequency 

(dilation and translation) dimensions.  Even doing this can 

still lead to a potentially infinite number of basis 

functions as the input gets.larger in space and finer in 

frequency. Thus we need some way to organize and keep track 

of which wavelets will be used for a given approximation. Our 

algorithm relies on wavelet structures (Section 3.1.1.1), 

data normalization (Section 3.1.1.2) and multiresolution 

(Section 3.1.1.3) for this task. These all take place once, 

before the on-line approximation begins.  Once an 

appropriate wavelet structure is created, it is easy to 

determine on-line which wavelets will be hit by a given input 

vector (Section 3.1.1.4). 
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3.1.1.1 Wavelet Description 

The first step in organizing the wavelet bases is to 

provide a way to access and describe the wavelets that will 

be used in the approximation.  This is done by assuming the 

wavelets are independent constructs represented by a general 

structure: 

Wavelet: 

ID Number Location Coefficient 

ID Number - An unique numbering used to 

identify one wavelet from another 

Location - A vector containing the unit's center 

Coefficient - The wavelet coefficient 

This structure tells us the translation of the wavelet 

(location), gives us a way to identify the wavelet, and keeps 

the wavelet's training information (in the form of a 

coefficient). Dilation information is provided by the 

network structure, specifically by what resolution level it 

is at. 

3.1.1.2 Data Normalization 

The first step in culling the available wavelets to a 

reasonable number is to limit the translation space. In our 

algorithm this is done through normalizing the input data. 

Input data are assumed to be normalized in the range of 0 and 

1 before they are passed to the algorithm. By separating the 
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normalization from the algorithm we save the algorithm from 

storing any of the data, or information about the data. This 

frees the algorithm to be used for true on-line 

approximations.  Section 5.1.1 discusses the steps necessary 

to normalize data for a real application. 

Normalization significantly reduces the number of 

wavelets needed to produce an approximation. First, we know 

the maximum size wavelet available for use.  That wavelet is 

the one which completely spans the input domain (in our case, 

between 0 and 1) . This makes sense because we know that 

there will be no data outside of that range due to 

normalization.  Subsection 3.1.1.2.1 goes further into this 

topic. 

This type of normalization is not the only solution to 

the problem of limiting the extent and the number of 

wavelets. Another method could be to have variable 

boundaries according to the data seen so far. As new data is 

introduced which is outside the current range, the boundaries 

are extended, increasing the number of viable wavelets that 

can be trained. This is an aspect of variable structure that 

we chose not to pursue since data normalization was an easy 

solution.  There are other solutions, but for our purposes, 

the simple type presented above suffices. 

3.1.1.2.1 Truncating Wavelets 

If we use data normalization we must enforce strict 

boundaries around the input domain. If a wavelet extends 
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outside of these boundaries, only the portion of the wavelet 

within the input domain will be hit by the data. This 

effectively changes the shape of the wavelet (see Figure 

3.2). This new shape will not be in the orthogonal wavelet 

basis and thus must be discarded. 
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0.2  0.4  0.6  0.8 

Figure 3.2 A Wavelet Which Extends Past the Normalized 
Range and its Resulting Shape 

It seems prudent to provide a short illustration of why 

a cutoff wavelet will no longer be orthogonal to the basis. 

The primary reason for this is because an orthogonal basis 

assumes that every wavelet used in the basis will be hit by 

regularly spaced, dense data [10]. Although this is only in 

the perfect case, a cut off wavelet will never have data hit 
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the portion that extends beyond the normalized range. This 

means that we can't even approximate regularly spaced, dense 

data and thus it can only be orthogonal by chance. We can 

construct a shorter example by looking at Figure 3.3. The 

top function is the truncated wavelet from Figure 3.2. The 

function on the bottom is the Haar scaling function. 

Tiuncated Haar Wavelet - Not in Orthogonal Basis 

Soi 

-2 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Scaling Function of the Orthogonal Basis 

«o 

-1 

-I -I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

Figure 3.3 Truncated Wavelet Shown with Scaling Function 

Equation 2.5 told us that the integral of the product of two 

orthogonal wavelets must be zero. Taking the integral of the 

functions in Figure 3.3: 
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By using this same principle, we can reduce the number of 

viable wavelets for the approximation to only those which fit 

within the input domain. 

3.1.1.3 Multiresolution 

Normalization tells us if a wavelet is viable, but it 

does not tell us exactly what wavelets will be necessary. 

Multiresolution provides us with a hierarchical design that 

determines where each wavelet will go and what its dilation 

will be.  In our algorithm this process is very simple. The 

largest wavelet available along with the associated scaling 

function for the orthonormal basis (reference Section 2.2) 

are considered to be resolution level one. This wavelet and 

scaling function will span the input domain. The dilation of 

level one is set to the value one.  On top of this, we are 

able to construct finer and finer grids of wavelets which 

tell us the smaller translation steps and the higher dilation 

levels (i.e. higher frequency) of every wavelet necessary for 

the approximation. 
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Figure 3.3 Location Grid for Resolution Levels 1-7 

At each successive resolution in the grid, we get these 

relationships: 

Frequency (dilation): 2x the next lower Frequency 

Spatial (translation): distance apart is reduced by 1/2 
from next lower resolution 

This allows us to determine how many wavelets are on a 

particular level (since the range is normalized to 1) and 

what their locations (translation coefficients) are. If we 

know what resolution level we want to stop approximating at 

(Figure 3.3 assumes level 7) we know exactly how many 

wavelets will potentially be necessary, as well as the 

translation and dilation coefficients for them all. 
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3.1.1.4 Findina Wavelet Hits for Compactly Supported Wavelets 

This is the part of stage one that takes place on-line. 

Luckily, determining which wavelets should be trained is 

really the easy part. This is especially true for wavelets 

which do not overlap, such as the Haar wavelet. The 

multiresolution grid structure that we built above basically 

tiles the space with these wavelets. As seen in Figure 3.4, 

each wavelet has a specific location range, or support, that 

it is responsible for. A wavelet will only be trained if the 

input falls within its range, making this step completely 

input driven.  Since the ranges do not overlap, only one 

wavelet will be chosen for each of the resolution levels. 

This indicates that for each input, only n wavelet units will 

be trained, with n  equal to the maximum resolution number. 

The equation for determining which wavelet in a given 

resolution level has been hit is: 

™»=\nP%melet range ] <3-1» 

where 

T 1 is the ceiling function 

num is an integer referring to the position of the 

wavelet within the given resolution level 

wavelet range is a value determined by the size of 

the wavelet at the given resolution level 
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Figure 3.4 Wavelets With Input = .3 Within Their Range 

As whit" wavelets are found they are kept by their 

identification number to be updated later. Once a wavelet 

has been found for every resolution level, stage two can 

begin. 

3.1.2 Stage Two: Compute Network Output and 

Approximation Error 

At this stage we assume that we have identified the hit 

wavelets and scaling functions. Now we must determine what 

values the wavelets give us for this input vector (the 
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network approximation) and how that compares to the expected 

output (the approximation error). The equation to determine 

the network approximation is: 

y(x) = qT(x)c = £a,(*)c< (3.2) 
i 

where 

y is the network approximation 

a.(x) is the wavelet evaluated at the inputs 

c is the wavelet coefficients 

The network output is the sum of the wavelet basis functions 

evaluated at the input vector. The wavelet coefficient is 

taken from the wavelet structure. The value sk(x)  is a 

function of the location of the wavelet and the network 

input. Figure 3.5 shows a. (x.)  being computed on two Haar 

wavelets. Wavelet 1 gives a value of -1 for a. at the input 

while Wavelet 2 gives a value of 1. 

Once we have the network's output for the given input 

the only thing left for this stage to complete is to 

determine the approximation error. This is simply the 

squared error between the actual and expected outputs : 

(expected output - actual output)2 (3.3) 

This value is then passed on to the next stage to aid in 

training the wavelet units. 
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Figure 3.5 Evaluating Two Wavelets in the Grid at Input= .6 

3.1.3 Stage Three: Train Wavelets 

Training is accomplished in an on-line manner. This 

allows the algorithm to be used by a much wider selection of 

problems since on-line training can be simulated by using a 

batch if necessary. It is also the most suitable method for 

our applications of interest since we will be looking at on- 

line dynamical systems where the full scope of the data 

encountered is not known. Variable structure is a boon for 

this situation since it can learn and change structure on- 

line. 
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Training is used to make the wavelet coefficients better 

represent the data.  It uses the A values and the error 

generated from stage two to determine which wavelets need 

adjusting and by how much. Then new coefficients can be 

created from this and the wavelets updated. 

3.1.3.1 Training Wavelets 

To train the coefficients of the wavelets that have been 

hit by the input vector we use Recursive Least Squares (RLS). 

For the basic algorithm we will perform RLS on every "hit" 

wavelet simultaneously (in Section 3.3.3 we will see that 

this is not always necessary). 

RLS is performed by keeping global covariance matrices 

for the input data and the input uncertainty. Encoded in 

these is all that is necessary to perform incremental 

coefficient updates (Section 2.3.3 goes more in depth on this 

subject). The matrices are updated through the use of an 

information matrix, or A matrix. This matrix is formed by 

using the A values determined in stage two along with zeros 

for every wavelet which was not "hit" by the input vector. 

Any wavelet with a zero in this matrix will not be updated. 

With the two covariance matrices, the A matrix and the 

expected output vector, RLS computes the new coefficient for 

each wavelet. Each coefficient is assured to be the optimal 

Least-Squares solution so far (see Section 2.3.3). This 

coefficient replaces the old coefficient in each of the 
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wavelet structures, ending stage three. This process is 

repeated until the stream of input vectors is stopped. 

Target Function 
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Figure 3.6 Haar Wavelet Approximation a Function 

The example presented in Figure 3.6 shows the 

approximation ability of the basic algorithm. The Haar 

wavelet was employed and the resolution level was set to 7, 

giving us 127 wavelet basis units. The data stream consisted 
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of 3000 random vectors from the input function. The network 

output nicely captures all of the features of the input 

function. For comparison, Figure 3.7 shows the same target 

function approximated using the Mexican Hat wavelet with the 

basic algorithm. At resolution level 7, it also captures all 

of the features of the input function. 
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Figure 3.7 Mexican Hat Approximation of a Function 
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3.1.4 Generalizing the Basic Algorithm 

In Sections 3.1.1 through 3.1.3 we presented an 

algorithm in very basic terms and overlooked a few problems 

in lieu of a more understandable algorithm. To make the 

algorithm more general we need to look at the problem of 

overlapping wavelets and how the scaling function fits into 

the complete algorithm. 

3.1.4.1 Modifications Neciessarv for Overlapping Wavelets 

The use of non-compactly supported wavelets complicates 

things somewhat.  However, this complication only manifests 

itself in stage one, specifically when we are determining 

which wavelets are "hit" for an input vector. 

Each type of overlapping wavelet has a specific 

overlapping range.  In our multiresolution structure, this 

value can be represented in terms of how many adjoining 

wavelets it overlaps into. This number is independent of 

resolution because the ratio of wavelet size to wavelet space 

remains the same in our structure. Thus if the overlap value 

is 2, each wavelet will potentially overlap two wavelets on 

each side (by convention). We say potentially because the 

normalization boundaries still stand. Only those wavelets 

that exist within these boundaries can be overlapped upon. 

Since overlapping wavelets can extend indefinitely, we need 

to relax our previous restrictions somewhat. Now, the 

largest wavelet allowed will be chosen so only a small part 
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of the function (preferably just the tails) will extend 

beyond the normalized range. By nature of the location grid, 

the wavelets above the first will have even less of their 

functions truncated.  The truncated amount will cause a small 

degradation in the approximation ability, but it will be 

trivial.  Figure 3.8 shows the wavelet hits using overlapping 

wavelets on the same input as in Figure 3.4. 
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Figure 3.8 Wavelets Hit With Input = .3 and Overlap = 2 

Using the overlap value we can find the hits on 

overlapping wavelets by using Equation 3.1. For each 

resolution level this will give us the center unit for the 

input (represented by the squares on Figure 3.8). From this 
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value we simply include the number of wavelets on each side 

of the center unit equal to the overlap value (represented by 

the circled units on Figure 3.8). Thus with n  resolution 

levels the number of wavelet hits will be: 

n < # of wavelets hit < n  *   (overlap + 1)       (3.4) 

As in Section 3.1.2.2, as the "hit" wavelets are found, they 

are stored by their identification number to be updated 

later. 

3.1.4.2 Updating the Scaling Coefficient 

The scaling function is a special case of a wavelet 

function, determined by the orthonormal basis chosen (see 

Section 2.2).  Typically, the scaling function is the first 

thing to be trained and updated since it provides the bias 

for the approximation. 

The same process is used to train the scaling function 

as we use to train the wavelets. However, the process is 

quite a bit easier.  Since it spans the entire normalized 

space, it is hit with every input. Additionally, there is 

only one scaling function, simplifying RLS training in the 

sense that the P, V, and A matrices are all single values 

(reference Equation 2.17). 

Knowing the above information, stage one is unnecessary. 

Stage two is completed with the equations: 

y(z)   = c • a(2£) (3.5) 

e = (y(&)  - y(£))2 (3-6) 

69 



where 

y(3c)  is the scaling approximation 

y (x.)  is the target vector 

e is the scaling error 

c is the scaling coefficient 

a (x)   is the value given by evaluating the scaling 

function at the input vector 

Stage three is completed in the same manner as with the 

wavelets: the scaling coefficient is determined using the A, 

P, and V values along with the scaling error. 

At this point, something different occurs.  Each unit, 

whether it be a scaling unit or a wavelet unit, takes up a 

certain portion of the approximation error (we update the 

units to reduce this error).  Since we update the scaling 

function first and independently of the wavelets (which we 

can do because of the orthonormal basis), the new error that 

the wavelets train on is just the scaling error: 

e' = y (x)   - C- a(2c) (3.7) 

where 

e' is the new error 

c' is the new scaling coefficient 

This is basically saying that the approximation error for 

that input is reduced by what the scaling unit is now 
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evaluated at. The rest of the error which the scaling 

function cannot absorb must now be taken care of by the 

wavelets. The scaling function is put into the final 

algorithm in Section 3.1.5. 

3.1.5    Summary of the Basic Algorithm , 

The basic algorithm is performed one input at a time. 

For compactly supported wavelets, the algorithm looks like: 

• p, v <— wavelet covariance matrices 

For some input— 

• update the scaling function using RLS 

• update the wavelet functions using RLS: 

• A <- empty vector of size = total number of 
wavelets 

• for every resolution level— 
• num <- Tinput / wavelet_support(i)l 

• ID <- get_wave_ID(num, i) 
• A(ID) <- find_Avalue(input, ID) 

• P,V, coefficients «- perform_RLS(A, P, 
V) 

• wavelets <- new coefficients 

Non-compactly supported wavelets require the overlapping 

wavelets to also be trained. 
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3.2 Simple Variable Structure 

In Section 3.1 we built an algorithm for approximating a 

function in an on-line manner using a set of known wavelet 

basis functions. The goal of this section is to take the 

previous algorithm and modify it to allow wavelets to be 

added only when they are needed for the approximation.  This 

algorithm will be the basis for the rest of this thesis.  To 

describe the modifications necessary for variable structure 

we will rely upon the flow chart in Figure 3.1. 

In stage one we add more information to be kept by each 

wavelet. The algorithm for finding "hit" wavelets is also 

modified to work for unlimited resolution levels and non- 

existent wavelets (see Section 3.2.1). The additions to 

stage two deal with computing the new metrics of wavelet hits 

and local error for each "hit" wavelet (see Section 3.2.2). 

Finally, stage three's implementation of RLS must be modified 

to work with a variable number of wavelets and a structure 

must be created to use the information from stage two to 

decide when to add new wavelets. New wavelets will be added 

according to the number of hits and their local error 

(Section 3.2.3). 

3.2.1  Modifications to Stage One 

Stage one is really independent of the choice of 

variable structure. We will still use data normalization and 

multiresolution, including the location grid shown in Figure 
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3.3. The only difference is that while the locations of 

every possible wavelet are known, the wavelets are no longer 

guaranteed to be there (i.e. they have not been added to the 

basis). Additionally, some extra information must be kept 

for each wavelet. 

3.2.1.1 The New Wavelet Description 

There are some new statistics that will be required for 

each wavelet in this implementation.  In order to conduct 

variable structure we will need to now keep track of the 

number of data hits and the local approximation error for 

each wavelet. 

Wavelet: 

ID Number Location Coefficient Hits Error 

3.2.1.2 Determining Wavelet Data Hits 

In the basic algorithm presented in Section 3.1,- we knew 

the number of resolution levels and that there would be a 

wavelet in every resolution that would be hit by the data. 

This is no longer the case in a variable structure situation. 

Now, there is no limit on the number of resolution levels and 

there is no guarantee that even if a level exists, that there 

will be a wavelet which has the input vector within its 

range. 
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The solution to these problems is quite easy. First, we 

make a rule stating that every new wavelet must be placed in 

the grid and above another existing wavelet (see Figure 3.9). 

Figure 3.9 Variable Structure Grid Showing Wavelets With 

Input = .3 in Their Ranges 

This sounds restrictive, but it is reasonable. In 3.2.1.1 we 

saw that we now need to keep statistics on wavelets in order 

to determine which new wavelets will be added. Every wavelet 

keeps statistics for the wavelets above it in the next 

resolution level. This implies that to even consider adding 
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a new wavelet, the wavelet in the resolution level below it 

must already be in the basis. We are restricting the power 

of the representation, but it is necessary if we are going to 

have the information to determine which wavelets should be 

added to the basis. 

With this new rule, determining which wavelets should be 

trained on the input data is easy. 

• Resolution <— 1 

• repeat until wavelet does not exist 

• wavelet = .["input / wavelet_range(Resolution)! 

• IF wavelet exists 

• store ID to train later 

• resolution += 1 

The above pseudo-code relies on a simple rule. A resolution 

level which does not have a wavelet hit by the input data, 

implies that there will no more wavelets since they would 

have to be built above the nonexistent wavelet. This makes 

determining, which wavelets should be trained on a given input 

as fast as in the basic algorithm in Section 3.1. 

3.2.2  Modifications to Stage Two 

Previously in stage two, we computed the network output 

and the approximation error. Now we must also update the hit 

and error statistics for the highest resolution wavelet with 

the input data within its range. We only keep statistics for 

the highest resolution wavelet because it is the only given 
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wavelet which does not have any wavelets above it (see Figure 

3.9). Therefore it is the only wavelet which needs to keep 

statistics. 

Each wavelet must keep statistics for every new wavelet 

in the next resolution that can be added above it. Using one 

dimensional input data, this implies that each.wavelet must 

keep statistics for two potential wavelets above it.. 

The first thing that must be updated is the hits for 

that particular wavelet. 

• IF hits < min_hits 

•   hits <— hits + 1 

The variable min_hits  is the number of hits that are 

necessary for the wavelet in the next resolution to be added. 

By requiring a certain number of hits (i.e. 5 hits) we ensure 

that the errors have had time to stabilize and that we are 

not adding a new wavelet because of a single spurious input. 

We can use the updated hits to update two types of error 

for each wavelet. The first error is the local average 

error, or the local L2 error. 

avg_error = avg_error +   (1 / hits)   * 

(approximation error - avg_error)3 (3.8) 

where 

approximation error  is the result of Equation 3.3. 

RLS reduces the global average training error so it is 

necessary to keep the local average error for each wavelet. 
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This allows us to find the individual wavelets which have 

large errors. However, it isn't the only error we need to be 

concerned with. 

The second type of error we need to compute is the local 

maximum error (this is similar to the L°° error) .  It keeps 

track of the maximum error experienced by that wavelet so 

far. The maximum error is used to prevent large error spikes 

in the approximation, since it is possible for the average 

error to be low while still having some large errors mixed 

in. Depending on the application, a new unit might be 

necessary to bring these large errors down. 

3.2.3  Modifications to Stage Three 

To accommodate variable structure, the first change 

needs to be an update to the training algorithm. In Section 

3.1 there were a fixed number of units, resulting in a known 

size for the covariance matrices used by RLS (specifically n 

x n with n being the number of units) . In our variable 

structure architecture, n  increases; implying that our 

covariance matrices in RLS must also grow. The properties of 

RLS make this easy. To expand the inverse covariance matrix 

(p-i _ reference Equation 2.17), a row and column is simply 

concatenated. Thus to add a unit to an m x m inverse 

covariance matrix, we simply increase the size of the matrix 

to (m +1)    x (m + 1),  filling the newly created space with 

zeros. This row/column number now correspond to the new 
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wavelet and a mapping between them should be kept in order to 

update coefficients from the RLS algorithm. 

This stage is where variable structure actually takes 

place. With the updated information from stage two, stage 

three can train, update, and possibly add new wavelets.  The 

initial network has one unit and a scaling function at 

resolution level one. As inputs are used and the statistics 

are updated by stage two, units are slowly added to the basis 

to improve the approximation of the output function. 

The decision to add a new unit is based upon three 

inequalities: 

hits >= min_hits AND 

(avg_error > avg_error_thresh OR 

max_error > max_error_thresh) 

If this boolean expression is true, the wavelet in the next 

resolution corresponding to the input data will be added. 

This means that the topmost wavelet has been hit enough times 

to give good error information and that at least one of the 

local approximation errors for that wavelet are larger than 

the thresholds set by the user for these errors. These 

thresholds are set according to how much accuracy is required 

in the approximation. The higher the accuracy, the greater 

the number of units and time to convergence will be. 

After the decision to add a new wavelet has been made, 

the algorithm repeats. Since wavelets can only be added to 

the next highest resolution level and only one wavelet will 
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be hit per level, the maximum number of wavelets added per 

iteration is one. 

3.2.4 Variable Structure Results 

One of the most important qualities of a variable 

structure algorithm is that it only adds the units necessary 

to approximate the given function. This means that assuming 

that the function is stationary, at some point the network 

must reach an equilibrium point where it has enough units to 

approximate the function. Our algorithm stops adding units 

once the local errors of all the topmost wavelets are below 

the given thresholds.  Since all of the local errors are 

below the thresholds, it is easy to see that the global 

errors must also be below. 

Figure 3.10 shows an approximation of an input function 

using the Haar wavelet and the variable structure algorithm 

presented in this section. By comparing the locations and 

frequency of the data (third graph from top) with the input 

function it is clear that the algorithm uses more wavelets in 

the high frequency areas of the function and significantly 

fewer in the low frequency sections. This results in a 

significant savings of wavelets over the algorithm presented 

in Section 3.1 (68 vs. 127 wavelets).  The wavelet units 

used are located such that all of the features of the input 

function are still captured (reference Figure 3.6). 
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Additionally the variable structure algorithm is faster, 

taking 28.0 seconds to complete while the basic algorithm 

needed 33.8 seconds. The lowest graph shows the number of 

wavelets used as a function of number of inputs.  It is clear 

that the addition of wavelets begins to slow around input 

1000 and stops altogether near input 1700. At this point the 

network stops growing.  Figure 3.11 shows the same function 

being approximated using the Mexican Hat wavelet.  It 

requires 79 wavelets to approximate the target function using 

the same thresholds as in Figures 3.6, 3.7, and 3.10. The 

resulting function displays the smoothness associated with 

smooth wavelet approximations. However, the Mexican Hat 

approximation took significantly more time than the Haar 

wavelet. The variable structure algorithm took 292.7 seconds 

versus 340.1 seconds for the basic algorithm. These values 

are over 10 times larger than the corresponding times for the 

Haar approximations, with no significant increase in 

accuracy. Clearly, the Haar wavelet is much more useful in 

this type of structure. 

In this section, we have put together a simple variable 

structure algorithm which rivals the basic algorithm of 

Section 3.1. The additional complexity of the implementation 

is balanced by the large reduction in wavelets and the 

computations associated with them.  Section 3.3 explores 

additional enhancements that can be made to this algorithm. 
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3.3 Algorithm Enhancements 

3.3.1 Frequency Data 

Frequency data is without a doubt the most necessary 

enhancement to the no-frills variable structure algorithm 

presented in Section 3.2. When used as part of the criteria 

for the addition of new wavelets, it prevents the algorithm 

from overfitting the data, enhancing generalization. 

The idea behind frequency data is that the size of a 

wavelet basis unit should be dependent upon the frequency of 

the data. Any attempt to use wavelets of higher frequencies 

than are present in the data will result in basis functions 

which are unfounded and that can't be properly trained. This 

is best displayed in the case of the Haar wavelet of Figure 

3.12.  If wavelet one were to be trained on just the data 

shown, it may make a very good fit using the left half of the 

wavelet, but the right half has no information to constrain 

the approximation. Obviously the wavelet is not the proper 

size to approximate the data. Wavelet two is a much better 

choice since both sections of it are constrained by data. 

In the case of regularly spaced, one dimensional data, 

the size of the smallest allowable Haar wavelet is easy to 

determine: 

rain wavelet width = 2 ■ d      (3.8) 

where 

d  is the distance between neighboring wavelets 
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This makes sense because each Haar wavelet will need at least 

two data points (one on each side) to constrain it (see 

Figure 3.13). However, our algorithm does not assume 

regularly spaced data. Luckily, due to our multiresolution 

structure there is a way to do the same sort of analysis 

locally. 

For one dimensional input, there will be two "bins" that 

must be filled with data before each wavelet can be added. 

These bins allow us to keep track of the local data frequency 

for each wavelet. Multiresolution tells us that for every 

wavelet used in the one dimensional approximation, there are 
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potentially two wavelets above it in the next resolution. We 

can use this fact to store the data for the two potential 

"daughter" wavelets in the current wavelet. This means that 

in a one dimensional network, each wavelet must keep track of 

four bins total for the two potential "daughter" wavelets 

above it (see Figure 3.14). 

The requirements for filling the frequency bins can 

vary.  In cases when you wish the network to grow at the 

fastest possible rate, one data point in each bin will be 

adequate to constrain the wavelet basis functions (2 data 

points per new wavelet). In other applications, several 
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points per bin may be more useful.  Our algorithm uses a 

binary number for frequency with each bin getting one digit 

(only one data point per bin is necessary).  This allows fast 

retrieval of frequency information by just looking at 

individual bits and is efficient in the sense that only one 

variable is used for all of the frequency information. 
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Figure 3.14 The Four Data Frequency Bins for 1-D Data 

The approximation of the sparse data (data points 

represented as X's) in Figure 3.15 illustrate why data 

frequency is an important criterion for the addition of new 

wavelets.  Instead of just fitting wavelets to the data as in 

the middle graph, the frequency data only allows wavelets to 

be placed which are constrained by the input data. Thus in 

86 



the third graph we don't see the dramatic spikes at locations 

.06, .33, and .68. There is a trade off for this better 

generalization. There are many instances on the graphs were 

the approximation using frequency data does not approximate 

the individual points as well. This represents the classic 
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trade off between generalization and memorization.  In most 

cases the approximation using data frequency will be more 

desirable since it is much closer to the "spirit" of the 

input function. 

3.3.2 Inactive Wavelets 

The variable structure algorithm outlined in Section 3.2 

is somewhat rigid in its implementation.  Particularly, the 

addition of new wavelets is a little too constrained. New 

wavelets can only be added at the next resolution level, and 

only above an existing wavelet. What if we have a 

concentration of data that is at a higher resolution than the 

wavelets that can currently be added? 
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Figure 3.16 Data Distribution Warrants Inactive Wavelet 
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Approximation error will drop significantly if we are 

able to bend the rules somewhat and add that small wavelet 

that the data calls for. In the case of Figure 3.16 the 

wavelet at resolution level two cannot be added because there 

is no data present corresponding to its right half (see 

Section 3.3.1). The wavelet at resolution three, however, 

has more than enough data present to be added if it is needed 

by the approximation. Inactive wavelets provide the framework 

within the variable structure algorithm to allow us to "skip" 

resolution levels and add higher frequency wavelets to the 

structure. This in no way changes the viability of the 

approximation.  The orthonormal wavelet basis allows us to 

use any and all of the wavelets for an approximation. The 

restriction that wavelets have to be added onto other 

wavelets is simply to allow us to keep statistics on the 

error, data frequency, and wavelet hits. 

To preserve this system of keeping statistics in the 

wavelets themselves, place-holder wavelets are added to the 

structure to hold the position and record statistics. Since 

these place-holders will not be trained on (since the 

statistics did not deem them fit to be a real basis unit), we 

dub them inactive units. These units serve the purpose of 

being a records keeper so that other wavelets can be added 

above them. The algorithm for determining if an inactive 

wavelet should be added is: 
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• for each side of the current wavelet   (2 sides in a 1-D 

wavelet) 

• check wavelet hits >= necessary 

• check wavelet error >= max allowable error 

• check frequency bins (see Section 3.3.1) 

• IF only one of the bins is full THEN 

• Add inactive wavelet 

The basic premise of this algorithm is that we are 

checking to see if only data frequency is stopping a new 

higher frequency wavelet from being added. We know that the 

wavelet has been hit by data a significant number'of times 

and that it has been unable to absorb all the error. What we 

are looking for is if there is a possibility that the next 

wavelet will never be added because data won't show up in a 

portion of its range. Notice that we don't automatically add 

the higher resolution wavelet along with the inactive 

wavelet. This is because we do not have enough frequency 

information on the wavelet. We know that it is getting data 

in its range, but we don't know if both sides of it are 

getting hit. Therefore we add the inactive to record this 

information and add the higher resolution wavelet only if it 

fits all of the requirements. Figure 3.17 shows that there 

is a significant difference between an approximation with and 

without inactive wavelets. Figure 3.18 graphs the Haar 

wavelet units used. The empty circle is the inactive wavelet 
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placed by the network and the circled units are those that 

the inactive wavelet allowed. Without the use of inactive 

wavelets, these wavelets would not be added to the network, 

giving us the approximation in the middle graph of Figure 

3.17. The inactive wavelet allows us to approximate 12.5% 

more of the input function. 

Overall, inactive wavelets are a very useful enhancement 

to the basic algorithm. They allow the addition of higher 

frequency wavelets when they are needed, instead of waiting 

for the entire hierarchy of wavelets to make it up to that 

level (if they ever do) . The only problem is that there is 

extra overhead required to manage the inactive wavelets and 

to continue checking to see if they can ever become active 

(after some more data has been input they may now fulfill the 

addition requirements). However, this overhead is only 

necessary once the inactive wavelets have actually been 

added. No overhead is necessary unless the approximation 

really needs the higher frequency wavelets. 

3.3.3 De-coupled RLS Training 

The algorithms presented so far use a simple form of RLS 

training. For every input a vector is created holding every 

wavelet's value for that input (a wavelet that is not hit by. 

the data simply has a value of zero). This is then used by 

RLS to compute the new wavelet coefficients. The problem 

with this approach is that the covariance matrices used by 
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RLS are n x n with n being the total number of wavelets in 

the network. These matrices have the potential to get 

unwieldy and very inefficient since RLS must invert them. To 

get around this, we need to exploit the orthogonal 

characteristics of the wavelets. 

The purpose of the RLS covariance matrices are to keep 

track of the interactions between  the wavelets. Since we are 

using Haar wavelets, we know that the wavelets are orthogonal 
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in the limit as the number of input vectors approaches 

infinity. Thus the outputs of different wavelets are 

uncorrelated assuming a large amount of well-distributed 

data. This essentially means that we can perform RLS on each 

hit wavelet individually and still get a similar result as if 

we performed RLS on them all at once. The speed and 

efficiency we gain by doing this is significant since now the 

covariance matrices only need to be 2 x 2 (each wavelet keeps 

its own covariance as opposed to one big global covariance 

matrix). In terms of space, this means that we need to keep 

n    2x2 matrices versus 1 n x n matrix, or n versus n2  terms. 

Each wavelet can keep its own covariance value, freeing up 

the space that the large covariance matrices filled. 

Computationally, de-coupling is also much more efficient 

since RLS needs to invert the covariance matrices, which is 

computationally intensive for large matrices. Figure 3.19 

compares an approximation performing RLS training on all the 

units at once versus only performing RLS on individual units. 

The de-coupled algorithm had a sum squared error 6.8% larger 

than the full RLS algorithm. This is due to the wavelets not 

being 100% orthogonal (the data was not dense and regularly 

spaced). However, the de-coupled algorithm finished in 31.02 

seconds compared to 67.97 seconds, resulting in a 54% time 

gain.  In most cases this time savings outweighs the small 

increase in error. 
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The case of non-compactly supported orthogonal wavelets, 

changes this somewhat.  Since the wavelets are still 

orthogonal, there is covariance between two wavelets at 

difference resolution levels is still zero. However, non- 

compactly supported wavelets do interact with each other at 
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the same resolution level (by overlapping). Thus instead of 

using RLS to train the units individually, it must train on 

the subset of wavelets at each resolution level that are hit 

by the input.  This gives us n    m x m    matrices with m = 2 • 

overlap + 1.     In this case, we save space if m2  < n  since we 

have n m x m matrices as opposed to 1 n x n. 

Computationally, there is a good chance that de-coupling will 

be more efficient, even for large m  since smaller matrices 

are much easier to invert than larger ones. 

3.3.4 Pruning 

In the context of the algorithm presented here, pruning 

refers to the process of finding unnecessary or even 

deleterious bases in the current structure and eliminating 

them.    It is a relevant topic in any type of approximation 

where noise or overfitting of the data can be a factor.  In 

the case of a variable structure network employing orthogonal 

wavelet bases it is very useful since the removal of any of 

the bases will not affect the others. 

There are two problems that pruning can help with: noisy 

data and overfitting when dealing with areas of the 

approximation for which there is insufficient data. Noisy 

data is usually attributed to small, random errors in that 

data that are often assumed beforehand. It makes it 

difficult to achieve an accurate approximation because the 

data itself is not completely accurate. For example, this 

type of noise can cause small spikes in the network output 
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due to the wavering nature of the input data.  Since the 

learning algorithm cannot distinguish noisy data from 

accurate data, these spikes will sometimes be represented 

using high frequency wavelets.  Pruning is very effective in 

this case because the wavelets tend to be small and 

conspicuous. 

Overfitting in the approximation is usually caused by 

too little data being used for too much training.  In areas 

where data is scarce, it is often difficult to develop 

accurate bases. This can cause the algorithm to employ too 

many wavelet bases without enough data to support them.  In 

our algorithm, this type of error is combated through the use 

of stored data frequency information and accessed when the 

addition of new wavelets is necessary.  Section 3.3.1 

discusses this in more detail. Approximation error can also 

be due to artifacts left by the bases used in the 

approximation. An example of this is the square edges of the 

Haar wavelet left in an approximation of a smooth function. 

Pruning tends to not be very effective in eliminating this 

problem. 

One benefit of pruning is that there is usually a 

significant drop in the number of bases necessary to 

approximate the same function.  In an application where space 

or time to evaluate the bases is limited, pruning can be very 

helpful. Of course there is always a sacrifice. Although 

pruning attempts to only remove useless parts of the 

approximation, it is unlikely that it will do this without 
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affecting some of the genuine features of the approximated 

function. However, this tends to give a smoothed, more 

generalized representation which is desirable in some 

applications. 

Two common ways of implementing pruning are 

particularly well suited to a wavelet-based variable 

structure algorithm: cross validation and thresholding 

methods. Cross validation attempts to estimate how well  the 

current approximation will fare on unseen data  [13]. It is 

used to determine if the network is general enough to handle 

any arbitrary data, or if it has simply memorized the input 

data.  It works by not training the network on some fraction 

of the known input data. This data is set aside and then 

used at the end of a training cycle to test the prediction 

performance of the network on unknown data. It is used to 

prune units by being performed repeatedly on smaller and 

smaller incarnations of the same networks, until the best 

prediction performance is found. Bakshi, Koulouris and 

Stephanopoulos rely heavily upon this technique in their 

wavelet network to reduce overfitting and provide 

generalization [1]. 

Thresholding methods are used to prune units according 

to their influence on the approximation as a whole. They 

basically assume that in any approximation there will be some 

unimportant details that can be considered to be noise [11]. 

In terms of our algorithm, this would be decided based on the 

wavelet coefficients, with the smaller coefficients 
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considered less influential than the other wavelets. There 

are many types of thresholding. The two simplest forms are 

hard and soft thresholding. 

Hard thresholding is used when you are looking to 

reduce the number of units to the minimum necessary.  It 

analyzes the coefficients of every unit and if they fall 

below a certain magnitude, they are eliminated.  Soft 

thresholding on the other hand, shrinks all coefficients 

towards the origin [11]. As this happens, the units with 

smaller coefficients tend to disappear.  It is useful for a 

mild form of smoothing. 

Thresholding in general is much faster than cross 

validation since it can be done in one pass. Additionally, 

no data needs to be set aside to test the function on. We 

found thresholding to be useful in reducing the effects of 

input noise (see Figure 3.20). Hard thresholding is 

particularly effective at reducing the network to the 

smallest possible size. 

The biggest problem with thresholding is that it 

introduces a new adjustable parameter into the algorithm. 

The threshold changes according to the data, so it is 

difficult to find the correct value. Heuristics are usually 

employed to determine a reasonable threshold. One such 

heuristic could be the elimination of a certain percentage of 

the wavelet units. Depending on the application, the 

benefits of pruning may be worth the additional trouble of 

determining a proper threshold. 
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Chapter 4    Multi-Dimensional 
Networks 

In this chapter we will scale up the one dimensional 

network from Chapter 3 into a general network. This network 

will be capable of handling n  inputs and m  outputs with m  and 

n being natural numbers. This change will entail a • 

broadening of some of the concepts discussed in Chapter 3. 

4.1 Multiple Inputs 

The incorporation of multiple inputs allows us to go 

beyond the simple one-dimensional approximations and use our 

network on a much wider array of functions. Accomplishing 

this will only take a few modifications. To keep continuity, 

we will organize this section among the same dividing lines 

as represented in Figure 3.1, discussing only the portions of 

the previous algorithm which need to be modified for the n- 

dimensional context. 

4.1.1 Determining Hit Wavelets With N-Dimensions 

The basis functions that will be used for a n- 

dimensional network will be n-dimensional themselves. By 

looking back at Section 2.1.3, we see that these new 

orthogonal bases are just the tensor products of the one 

dimensional wavelets presented earlier. As an example, when 

expanding to two dimensions the resulting equations for the 

basis will be: 
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Given Y(x), <X>(x) 

•CO ¥(x2) 

<E>(x.) •(x,)«« OCx^Cx,) 

¥(x.) ^(X^OCXj) ^(x,)^(x2) 

Scaling Function : &(xlx2) = $(xl)&(x2) 

Wavelets: 

f(V2)=o^mx2) 

We can keep the same wavelet description with the minor 

change of the element Location  now storing an n-vector. 

ID Number Location Coefficient Hits Error 

Wavelets are now set in a fixed n-dimensional hyper- 

cube. This hyper-cube is set up in the same manner: the 

wavelet in resolution one spans the hyper-cube and each 

resolution above it has wavelets that are half the size of 

the wavelets from the previous resolution. While we relied 

upon there only being two potential wavelets at the next 

highest resolution for each wavelet before, we now have to 

use the more general rule of 2° potential wavelets. 

Finally, we use the same Equation (3.1): 
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nun, - \inPUt/ 1 num. — i      /wavelet range \ 

to determine which wavelet in a given resolution level has 

been hit. The only difference is that it must be used for 

each dimension, or n  times. This gives us the following 

algorithm: 

• coordinates  is an empty vector of length n 

• For dimension  <— l:n 

•   coordinates(i) <- [wavelet_Z^oU^^«)] 

where 

coordinates  is the location of the hit wavelet in the 

given resolution level 

wavelet_rangre is a value determined by the size of the 

wavelet 

T 1 is the ceiling function 

4.1.2 Computing Wavelet Statistics With N-Dimensions 

The computation of the statistics is the same 

regardless of the input dimension. However, one thing that 

does change with dimension is the number of statistics that 

must be kept. In Section 4.1.1 we determined that each 

wavelet will have 2° potential wavelets above it. That means 

that each wavelet must keep statistics for each of those T 

wavelets. 
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One other statistic is altered by multi-dimensional 

wavelets: frequency data. While this was listed as an 

enhancement in Chapter 3, it is an important part of our 

network since it provides the generalization component. The 

statistics such as hits and errors are the same regardless of 

the shape of the wavelet. Data frequency information, on the 

other hand, is directly related to the shape of the wavelet. 

In the one-dimensional example using the Haar wavelet, there 

were two regions to keep track of. Now frequency data must 

be kept for 2" regions. The implications of this are that as 

the input dimension increases, so does the amount of data 

necessary to fulfill the data frequency requirements (since 

there are more bins to fill). This is a necessary evil in 

order to ensure that the multi-dimensional wavelets have 

enough data to support their addition to the network. 

J- 

Figure 4.1 Data Frequency Bins for Two Input Dimensions 
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Figure 4.1 shows the four wavelets at the next higher 

resolution of the initial resolution 1 wavelet (n = 2 so we 

have 22 wavelets and 22 bins per wavelet) with the thick 

dashed lines.  The frequency bins for the wavelet in the 

upper right are shown with thin dashed lines. 

4.1.3 Training N-Dimensional Wavelets 

Our new multi-dimensional wavelet bases can be trained 

much the same way as their one-dimensional counterparts. 

This is true because we are essentially training on the same 

thing: the wavelet's value at the input vector vs. the target 

value. These values are scalar regardless of the input 

dimension. The only change in the computations is in 

evaluating the wavelets bases at the input vector. 

With the increase in dimension, we must now compute the 

RLS A matrix a little differently (reference Sections 2.1.2 

and 3.1.3.1). In one dimension we had to evaluate each 

wavelet at the input location. What we are dealing with now 

is a multi-dimensional wavelet created by the tensor products 

of one-dimensional wavelets/scaling functions. Thus all we 

need to do is take the product of each one-dimensional 

function corresponding to the dimension component of the 

input. The equation is: 

**»<2>=ii/**(*,) (4-i} 
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where 

a is the value to be placed in the A matrix or used 

alone (with de-coupled RLS) 

f is the one-dimensional function (wavelet or scaling) 

d is the dilation of the function 

t  is the translation of the function 

j  is the dimension 

x  is the input vector 

Xj  is the input component for dimension j 

RLS operates the same as before, taking the results of 

Equation 4.1 along with the input and target vectors as input 

and providing the new wavelet coefficients as output. 

4.2 Multiple Outputs 

While Section 4.1 concentrated on expanding our 

algorithm to work with multi-dimensional input, a truly 

general network will also need to be capable of dealing with 

multiple outputs. Specifically, we want our algorithm to 

have the ability to approximate a function with m outputs. 

Given m outputs, we could break the problem down into m 

separate functions. Therefore, one solution to this problem 

is to have m different networks, one for each output. 

However, every output has the same input vector. We would 

like to capitalize on this by adjusting our algorithm to 

accommodate multiple outputs, preventing the overhead and 
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loss of efficiency associated with multiple copies of the 

network. 
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Figure 4.2 Network Flow Chart With N Inputs and M Outputs 

Figure 4.2 shows what our new general network looks 

like. The input vector determines which wavelets are hit by 

the input and where they are hit (for training and frequency 

data purposes). The network component takes an input vector 

in and produces in outputs according to the basis functions in 

the network. The target values can be grouped together into 

a vector that we will refer to as the target vector. This 

vector and the network outputs are used to determine how well 

the network is approximating the target functions, yielding 

an approximation error vector. Each element in the error 

vector corresponds to one of the m outputs. This error is 

used to train the wavelet basis units to better resemble the 

targets. If this were the only use of the network outputs, 
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then adding multiple outputs would be as simple as just 

keeping m coefficients for each wavelet corresponding to each 

of the outputs. Unfortunately, the approximation error 

(which is dependent upon the outputs) is also used as part of 

the criteria for building the network structure (see Section 

3.2.3). 

Since the structure of the network is directly related 

to individual output values, it seems logical that separate 

networks should be used, one for each output. However, this 

is very inefficient since the computations associated with 

finding hit wavelet units and updating their statistics will 

be repeated m times. A method needs to be devised such that 

the error information can be used to build a network 

structure that satisfies all of the outputs. We have devised 

two methods for doing this, the maximum network,  and the 

minimum network. 

4.2.1 The Maximum Network Method 

The maximum network method creates the maximum network 

necessary to satisfy the requirements for all  of the target 

values. It is very easy to implement. Each wavelet keeps m 

coefficients corresponding to each output. Network structure 

is determined by taking the approximation error vector and 

finding the maximum error. This is the error that is used to 

determine which new wavelets should be added. This means 

that wavelets will be added if any of the errors are above 

the thresholds. 
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By basing the variable structure component of the 

network on the maximum error, we do not lose any accuracy on 

the approximated function.  In fact, our accuracy will 

actually improve since additional wavelets will be used to 

approximate inputs which would not normally require them. 

However, our overall efficiency is reduced since these 

wavelets will be superfluous for most of the output 

functions.  In Figure 4.10 we see an example using two output 

functions.  If we use two separate networks we need to store 

35 units and use 43 seconds of computation time for each 

network (70 units and 86 seconds total). The maximum network 

combined structure uses 47 units and takes 54 seconds to 

approximate both outputs, and provides a little better 

approximation since more wavelets are used. 

The maximum network method is very basic and requires no 

extra statistics, or overhead, to be kept for its use.  It is 

most successful in approximating functions whose output 

structures do not differ significantly.  In these cases the 

loss of efficiency incurred by training many of the outputs 

on a larger than necessary network will be lower than 

training in networks of the various optimal sizes. 
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4.2.2 The Minimum Network Method 

The minimum network method combats the problem of using 

individual networks by keeping the smallest network structure 

that is common to all of the target values.  This is created 

by varying the network structure using the smallest of the m 

approximation errors that are generated by the,network. An 

additional m  separate structures must be kept, consisting of 

the wavelet basis units which must be added to the minimum 

network in order to approximate the m-th  output.  Since we 

are dealing with an orthogonal, multiresolution structure, it 

is no problem to use separate additive structures in this 

context. 

This method gives us the smallest network necessary for 

all m target values. Additionally, there is no redundant 

storage of wavelets since the wavelets common to all of the 

targets are stored in the minimum network. The real drawback 

to the minimum network method is the increase in overhead 

necessary to implement it. A mechanism is needed to 

determine when a wavelet basis function is common to all of 

the output structures, add it to the common network 

structure, and remove it from the other structures. When m 

is large, the loss in efficiency from this mechanism could be 

prohibitive. 

4.3 The Curse of Dimensionality 

The most obvious result of allowing multi-dimensional 

input/output is that the complexity of the algorithm 
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increases with the dimension. Many of the computations done 

for a one-dimensional network must now be repeated for each 

dimension. New network structures must be created to allow 

multiple outputs. As if this weren't enough, we also have to 

deal with the added complexity caused by multi-dimensional 

wavelets.  The curse of dimensionality manifests itself with 

the exponential growth of wavelets as the input dimension is 

increased. 

We mentioned in Section 4.1 that wavelets are built upon 

one another using the relationship that there are T potential 

wavelets at the next highest resolution for every wavelet. 

The multi-dimensional orthogonal wavelets from Chapter 2 

require an additional 2"-l  modes per wavelet.  Each mode is 

itself a wavelet at a different orientation from the other 

modes. This means that every time we add a wavelet to the 

network we are actually adding 2"-l wavelets each requiring a 

coefficient to be kept (the other statistics are the same 

among the modes).  It is not difficult to see that in a 

moderately high input dimension space, our network efficiency 

is greatly reduced. 

Reduced efficiency does not mean that our network is 

unusable with a large input dimension. On the contrary, it 

implies that a variable structure algorithm is necessary to 

approximate in such an environment. With the dramatic 

increase in the number of potential wavelets at higher 

resolution levels, it is vital that those levels are only 

embarked upon when the data absolutely requires it. In the 
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case of a multi-dimensional function which is complex in all 

aspects of the function space, no network will have an easy 

time approximating it. 

The problem of T-l  modes per wavelet can also be 

combated. Certain orientations of the wavelets are going to 

be much better suited to approximate the target function than 

others.  The orientations which contribute the most to the 

approximation will have the highest coefficients.  Once the 

different modes have been trained with a certain number of 

examples, it is then possible to prune the modes which have 

low coefficients (see Section 3.3.4).  If a mode is not 

contributing much, the overhead required to keep track of it 

is not necessary. With a good pruning threshold, each 

wavelet's modes can be kept to the minimum necessary to 

approximate the function to the desired accuracy. Thus while 

the curse of dimensionality is daunting, it does not 

invalidate our algorithm. In fact, we have used multi- 

dimensional wavelets successfully while still being 

efficient. 

4.4 Some Results Using Multi-Dimensional Inputs 

We will use this section to illustrate that our 

algorithm has essentially remained unchanged; it still 

performs the same in a higher dimension space. We will show 

two-dimensional input Figures since these are the most easily 

viewed.  The target function was chosen because it has both 

low and high frequency components. Additionally, it is a 
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smooth function, which is more challenging for the piecewise- 

constant Haar wavelet. The approximations were wholly based 

upon the error thresholds, meaning that they were allowed to 

approximate to any resolution in order to achieve errors less 

than the thresholds.  These thresholds are input by the user 

and were discussed in Section 3.2.3.  The threshold for 

average error  ensures that the local average error of each 

wavelet is below a certain level. The threshold for maximum 

error  forces each wavelet to have an average local maximum 

error less than the threshold. 

o o 

Figure 4.4 The Target Function 
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Figure 4.4 shows the target function and Figures 4.5 - 4.7 

show approximations of this function starting coarse and then 

adding more and more details. The included tables show the 

relevant statistics for these approximations 

o   o 

Figure 4.5    Approximation #  1   (coarsest) 

Approximation   #1 

Threshold for Average Error .05 

user input Threshold for Maximum Error .1 

results 
Number of Wavelets Used 11 

Computation Time 45 seconds 
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0     0 

Figure  4.6    Approximation  #  2 

Approximation   #   2 

Threshold for Average Error .005 

user input Threshold for Maximum Error .01 

results 
Number of Wavelets Used 60 

Computation Time 74 seconds 
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Figure 4.7 Approximation # 3 (finest) 

Approximation # 3 

user input 

results 

Threshold for Average Error 

Threshold for Maximum Error 

Number of Wavelets Used 

Computation Time 

.0005 

.001 

235 

133 seconds 
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Looking at the three approximations, it is clear that as the 

error thresholds are reduced, a greater number of higher 

resolution wavelets are required. Approximation one is very 

crude and boxy, but it still successfully captures the 

essential features of the target function. As we reduce the 

error thresholds, finer details are brought out in the 

approximation by the higher frequency wavelets. 

Approximation two reduces the error from approximation one by 

73%. Approximation three's error is only 9% of approximation 

one's error.  Figure 4.8 shows that approximation one only 

uses 11 wavelets while approximation 3 needs 235 wavelets to 

achieve its desired accuracy. We can see the same type of 

phenomenon with the one-dimensional data in Figure 2.2.  The 

advantage of our algorithm is that the variable structure set 

up is the same regardless of the input space dimension. 

Chapter 5 will show additional results by applying our 

algorithm to a more realistic problem. 
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5 Reinforcement Learning Experiments 

The previous chapters have relied upon simple functions 

and examples to illustrate the different features of our 

algorithm.  In this chapter we will now apply our algorithm 

to a more difficult and realistic problem and see how it 

fares with the increased complexity and limitations imposed. 

Reinforcement learning was chosen because of its interesting 

problems along with the fact that neural networks are often 

used as components in these types of problems. 

5.1 The Puck on the Hill Problem Description 

A well known problem used in reinforcement learning 

trials is the puck on the hill  problem. 

2.5 

1.5 

0.5 

-0.5. 
-20 -15 -5 0 

position (>0 
15 20 

Figure 5.1 Depiction of the Puck on the Hill Problem 
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Like the title indicates, the problem consists of a puck that 

must climb a hill (see Figure 5.1).  The puck can be pushed 

either forward or backward. The hill is purposely too steep 

and the maximum allowable force too small to simply push the 

puck up the hill.  Instead, some momentum must be gained 

first.  The specifics of the problem are: 

States: 
Position  (x) : [-20, 20] meters 
Velocity (v) : [-5, 5] meters/second 
Control  (u) : [-1, 1] newtons 

Hill; [x >  0     : 1 - cos(x * 7C/20) 
x <=  0   : 0] 

example: 

x         h dx/dh 
0.0     0.0 0.00 
5.0     0.3 0.11 
10.0   1.0 0.16 
15.0   1.7 0.11 
20.0   2.0 0.00 

Misc: 
Weight of Puck: 1 kg 
g = 9.8 m/s2 

When starting at x = 0.0, v = 0.0 and using u = 1.0 (maximum 

forward force), it is only possible for the puck to move as 

high as x = 10.5. The solution to the problem is to first 

move the puck backwards and accelerate along the flat portion 

of the space before encountering the hill. 

5.1.1 Normalizing the Data for Use with Our Network 

Before we can apply the problem in Section 5.1, the data 

must be normalized to work with our network. In Section 

3.1.1.2 we discussed the reasoning behind our network needing 
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normalized data. This in no way changes the problem, it is 

just a step that formats the data so that the algorithm can 

rely upon certain boundaries.  In our case, this 

normalization is easy. We already have explicit boundaries 

for the problem. All we need to do is scale the input data 

so that it is between 0 and 1 (see Equation 5.1). 

data — min ,_ „, normdata = ;— (5.1) 
max- mm 

where 

data is the input to be normalized 

min  is the smallest allowable input value 

max is the largest allowable input value 

5.2 Learning the State Transition Function 

In reinforcement learning terms, the state transition 

function is the function which determines what the next state 

is. Given a state-action pair: 

{states} X {actions} -» {states} 

The interesting thing about this function is that in 

reinforcement learning problems it is not known by the 

learning agent. The learning agent must explore the state- 

action space to build an internal model for the environment 

[13]. This idea makes reinforcement learning particularly 

attractive for problems in which we do not know or cannot 

easily define the state transition function. 

Some algorithms have been proposed to use this state 

transition model to improve the efficiency of reinforcement 
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learning [15]. The idea is that if this model can be learned 

and accessed independently by the learning agent, it can be 

used to simulate future actions by the agent. These future 

actions could be considered a sort of implicit planning by 

the agent to find the best path to the goal state without 

necessarily visiting every path and performing,backups [12]. 

The result is a much faster and efficient way for the agent 

to solve the problem. 

The puck on the hill problem has a known transition 

function (Equation 5.2) but for the purposes of representing 

it as a reinforcement learning problem it is assumed that 

this function is unknown. 

L J l+slope* 

v[t+l] = v[t] + a[t]Al (5.2) 

x[t + l] = x[t] + v[t]-At 

where 

u[t] is the control at time step t 

a/"t7 is the acceleration of the puck at time step t 

v[t] is the velocity of the puck at time step t 

x[t] is the position of the puck at time step t 

At  is the size of the time step 

For this experiment, we will attempt to learn the transition 

function for the puck on the hill problem.  This will require 

a network with three inputs (current position, current 

velocity, and control) and two outputs (new position, new 

velocity). Figure 5.2 shows a graphical representation of 

the network. 
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Wavelet Based Neural Network 

current position \X)         i 
 > new position (x') 

current velocity \y)         * 

 »new velocity (v') 
|      control (u)        » 

Figure 5.2  State Transition Network Layout 

The agent is assumed to have no knowledge of the state 

transitions and all information is gleaned through 

exploration along trajectories.    Each trajectory begins at a 

random state and a specified number of random actions are 

generated. For each action along this trajectory, the 

network is queried, giving its estimate for the next state 

and then trained using the state that the agent actually 

transitions to. After a specified number of trajectories, 

the network is tested to see if it can approximate the 

transitions necessary to solve the puck on the hill problem. 

The state transition problem was set up using random 

initial positions and trajectories of length 20 (the network 

trains on 20 actions from the initial position)". At every 

1000 epochs we used a simulation to test performance. The 

simulation used known trajectories of length 15. The network 

began in the start state of each trajectory and used the same 

actions. The end state of the model was then compared to the 

end state of the actual system to determine if the simulation 

was a success. Since continuous data was used, an error 

margin of ten percent was used to make the problem more 
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feasible. To pass the simulation, ten trajectories had to be 

successfully negotiated within the error margin. 

200 

500    1000    1500    2000    2500    3000    3500    4000 
Epoch 

500    1000    1500    2000    2500    3000    3500    4000 
Epoch 

Figure 5.3 Learning Results for State Transition Function 

The network performed well on the state transition 

function trial. As seen in Figure 5.3, training completed 

after 4000 epochs. At completion, the network was able to 

successfully follow all ten simulated trajectories. The 

error plot in Figure 5.3 shows the sharp spike in error while 

the network is still too small to learn the transition 

functions. As units are added, the error decreases rapidly, 

ending with a long period of fine tuning as the network 

learns the additional information.  It is interesting to note 
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that after approximately 900 trajectories, the network added 

all of the units necessary for the approximation. While the 

results of this experiment were good, the time taken to 

complete training was not. The network needed 16.4 hours  to 

train on 4000 trajectories (approx. 1.4 data vectors per 

second) . The dimension of the problem (3 input and 2 output 

dimensions) caused this poor time performance. Chapter 4.3 

discusses the curse of dimensionality associated with this 

algorithm and this test unfortunately supports those 

warnings.  In the recommendations section of Chapter 6 we 

will talk about how this problem can be combated. 

5.3 Learning the Puck on the Hill Problem 

Section 5.2 allowed us to test our algorithm on an 

application useful in the realm of reinforcement learning. 

However, the problem was basically a multi-dimensional, 

supervised learning problem. It really doesn't allow us to 

see how applicable the algorithm in this thesis is to a true 

reinforcement learning problem. To remedy this, we will use 

our algorithm to learn the puck on the hill problem. Q- 

learning will be used for this example. Russell and Norvig 

provide an excellent tutorial on reinforcement learning and 

Q-learning [13] . 

One of the interesting differences of reinforcement 

learning problems is that they require a network to be 

tolerant of non-stationary data. Non-stationary data is just 

that, it does not always give the same output for the same 
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input. Often times this is associated with some type of 

error in the measurement, but in this case it is caused by 

the fact that the network has very little information 

initially.  The Goal_State  contains all of the information 

and the other states are defined by their relative distance 

from it. Until the Goal_State  is actually visited and enough 

epochs have passed to allow that information to propagate 

backward, any query to the network will result in bad 

information.  Thus the longer the algorithm trains, the 

better the information should get. 

To allow for non-stationary data, we employed the age- 

weighted RLS training algorithm from Section 2.3. Equation 

2.20 restated is: 

prl=*p,i+ATA <5-4> 

From this, we can see that the inverse covariance matrix (P~ ) 

is discounted at each iteration, weighting the newest data 

the highest. Before diving right into the puck on the hill 

problem, we tested the algorithm on some simple training sets 

simulating non-stationary data. 

5.3.1 Testing the Network with Non-stationary Data 

Before testing on a full-fledged reinforcement learning 

problem we first tested the network's capabilities with some 

simple test sets of non-stationary data. We created test 

sets that start out with very bad data and then progressively 

get better, ending with accurate data. There are other ways 

to perform this type of test, but this method closely 
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simulates the nature of reinforcement learning, with very bad 

values in the beginning and better values as time goes by. 

What we are looking for is the network to remain stable and 

be able to adjust its parameters to compensate for the 

fluctuating data. Also, given enough good data, we want the 

approximation to eventually converge to the target function. 

The first example set was created by adding a constant 

value to the target function, y(x)   = sin(27tx): 

Data Points 1-1000   : sin(2rcx) + .5 
Data Points 1001-2000 : sin(2rcx) + .25 
Data Points 2001- ... : sin(2rcx)  (the target function) 

We will call this the constant value test.     Figure 5.3 shows 

this graphically. 

1.5 
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? 

-0.5 

. Data 1-1000 
•Data 1001-2000 
Target Function 

0 0.1 0.2 

Figure 5.3 Non-stationary Data Used for Constant Value Test 
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Figure 5.4 Results of Constant Value Test 
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Our network was able to converge to the target function. 

However, it needed nearly twice the amount of good data as 

bad data to get within the .0125 error threshold for the 

target function (see Figure 5.4). Another notable phenomenon 

was the large increase in wavelet basis units as the data 

sets changed.  This is due to the large errors/involved with 

the drastic changes at data points 1000 and 2000 and violates 

our initial assumption that errors are due to insufficient 

wavelet basis functions. Thus when using this algorithm with 

non-stationary data, another heuristic for adding units must 

be used. 

The second example set was created by shifting the 

target function, y(x)  = sin(270c):,  by a constant value along 

the input axis: 

Data Points 1-1000 : sin(2rc (x - .2)) 
Data Points 1001-2000 : sin(2rc (x - .1)) 
Data Points 2001- ... : sin(2rcx)  (the target function) 

We will refer to this as the shifted data test.  This set 

should be a little more difficult for the network to 

approximate because now not only do the coefficients need to 

be adjusted, but also the units responsible for each portion 

of the function will change. 

Our network was also able to converge to the target function 

of this example set. It exhibited the same jumps in unit 

additions as the previous set. Again, this is due to the 

large errors associated with the drastic changes in the 

relative target functions. Finally, this example set 
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Target Function 

Figure 5.5 Non-stationary Data Used for Shifted Data Test 

required even more good examples (approximately 6000, or 

three times as many) to get below the .0125 error threshold 

(see Figure 5.6).  This is most likely due to the more 

difficult nature of the data set. 

Figures 5.4 and 5.6 clearly show the approximation 

approaching the target as more good data is presented to it. 

If our error thresholds were set lower, the approximations 

would have been even closer to the targets (and the amount of 

good data required would have increased) . However, these 

results are good enough to show that the network will remain 

stable and converge to the target values when experiencing 

non-stationary data. 
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Figure 5.6 Results of Shifted Data Test 
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5.3.2 The Reinforcement Learning Problem 

In this section we are ready to test our network with a 

real reinforcement learning problem.  To do this we used the 

puck on the hill problem presented in section 5.1. However, 

we modified the problem somewhat to reduce the complexity and 

to facilitate the use of Q-learning. 

First, we reduced the action set to bang-bang control, 

allowing only a maximum force forwards (1) and a maximum 

force backwards (-1). Then we discretized the state space, 

allowing 81 states for position and 21 for velocity. This 

makes Q-learning feasible by making it possible to find the 

function maximum easily. The problem description remains the 

same. 

The network used for the problem will be a two input, 

two output Haar wavelet network. The inputs are position and 

velocity, and the outputs are the Q-values for each allowable 

action (forward or backward). Simply put, the two outputs 

Wavelet Based Neural Network 
current position (x) 1  » Q-value for Action 1 

current velocity (v) 1  » Q-value for Action 2 

Figure 5.8  Puck on the Hill Network Layout 

tell the controller the quality of each action, so it can 

determine which action for a given state will bring it closer 

to the goal. The algorithm for this problem is as follows: 
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• Gamma <- 0.9 
• repeat 

• Generate a random state 
• Generate a random action 
• next_state  <- transition_function(state,   action) 
• if next_state =  Goal_State 

reinforcement  <— 30 
else 

reinforcement  <- -1 
• current_g <- feedforward_net(state, action) 

• next_q <- 
max(feedforward_net(next_state,   {actions})) 

• update  <— current_q +  Gamma • 
{reinforcement  + next_q - current_q) 

• train_net(state, action,   update) 

where 
feedforward_net is a function that finds the 

network output for a given state-action pair 

update is the Q-learning update that the network 
will be trained upon 

train_net is a function that trains the network 
coefficients to better represent the data 

5.3.2.1 Results of the Puck on the Hill Problem 

The target functions for our discretized version of the 

puck on the hill problem are shown in Figures 5.7 and 5.8. 

The solution of our reinforcement learning problem does not 

require us to learn the target functions exactly. They 

simply need to be learned well enough that the network can 

determine the correct action for every state. In our test, 

we used a simulation to determine if the approximations were 

learned well enough. The simulation was conducted by 

choosing a random initial state. The network was then tasked 

to reach the goal state using 16 actions or less. When the 
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Position (Normalized) 0      0 

0.4 

Velocity (Normalized) 

Figure 5.7  Target Function for Action # 1 

Position (Normalized) 0   ^0 

0.4 

Velocity (Normalized) 

Figure 5.8 Target Function for Action # 2 
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network is able to reach the goal state using ten random 

starting points, training ends. 

Our network needed 8000 epochs and 45 wavelet basis 

units to succeed in the simulation. Like our experiment in 

Section 5.2, the network was exceedingly slow, taking 1.01 

hours to solve the problem (approx. 2.2 data vectors per 

second) . However, this is probably due much more to the type 

of problem (many queries to the network have to be made for 

each epoch) than to the dimension of the data. The plots of 

the output approximations can be found in Figures 5.9 and 

5.10. While they are not perfect approximations, they are 

good enough to allow the controller to make the correct 

decisions.  Figure 5.11 shows the number of basis functions 

used by the network as a function of epoch. 

Position (Normalized) 0     0 Velocity (Normalized) 

Figure 5.9 Approximated Function for Action # 1 
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Figure 5.11 Unit Count for Puck on the Hill Problem 
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6  Summary 

6.1 Conclusions 

The motivation for this thesis was to develop a compact 

network structure that could be used with on-line 

applications while being fast as well as computationally and 

spatially efficient. On-line training was taken care of by 

the Recursive Least Squares algorithm, which also provided an 

efficient way to process input data. Variable structure and 

multiresolution provide the compact network structure. Haar 

wavelets and de-coupled Recursive Least Squares were used to 

make things faster and simpler. How well these components 

worked together is shown by both the successes and failures 

of the network on the testing material. 

6.1.1 Overall Results 

With all things considered, the algorithm performed well 

in its trials. The success of the algorithm with variable 

structure was very pleasing. Our algorithm not only has the 

ability grow to match the needs of the input data, it is able 

to perform that growth based upon desired error thresholds. 

The examples in Chapters 2 and 3 clearly show the different 

approximations determined by different error thresholds. The 

algorithm also met our criterion for a fast algorithm, at 

least at lower input dimensions. At input dimensions one and 

two, the network was able to train on 15-30 data vectors per 

second, with only one pass through the data necessary. 
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Simple, orthogonal wavelets and RLS takes much of the credit 

for that.  So with these things in mind, it is reasonable to 

declare that this algorithm met its expectations. However, 

it is not without its faults. 

There is no doubt that we also experienced difficulties 

with this algorithm.  Perhaps the largest of these was the 

significant drop in performance with higher dimensional data. 

While not expressed in the requirements, there was the 

implicit hope that the algorithm would perform equally well 

on higher dimensional inputs. As seen in the Section 5.2 

model approximation, the curse of dimensionality does take 

its toll on the algorithm. The three input, two output 

network was much slower than anticipated. However, the 

network result was still accurate and still had the good 

generalization that was displayed in our lower dimensional 

examples. Future work resulting in better variable structure 

techniques and different wavelet basis functions may 

alleviate this problem. 

While Chapter 5 showed that our algorithm is capable of 

learning non-stationary data, it showed that it did not have 

a proclivity for it. This is most likely caused by the 

weighting used in the training algorithm (RLS) along with the 

additive network structure. The simple tests along with the 

length of time required to learn the value functions for a 

relatively simple reinforcement learning problem indicate 

that the algorithm is probably most useful in supervised 

learning problems with stationary data. While these problems 
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were unforeseen, they do not invalidate the success the 

algorithm displayed in our other examples.  They are best 

regarded as important knowledge on the limitations of our 

algorithm. 

6.1.2 Final Assessment 

I believe that we accomplished in this thesis what we 

set out for. While the network's performance is not 

extraordinary, its novel design and components are definitely 

useful. The network performs the way it was designed to, the 

next step is to use some of the elements in the next section 

to improve upon it. 

At the very least, portions of this network will be 

useful in the future designs of other networks.  There is an 

undeniable need for this sort of orthogonal, variable 

structure framework. There is no doubt that this is not the 

last paper on this topic; hopefully parts of it will 

influence other solutions. 

6.2 Recommendations for Future Research 

6.2.1 High Dimensional Data 

• Mode Determination. One of the most detrimental aspects of 
the "curse of dimensionality" for this algorithm is the T- 
1  modes which make up the orientations of each wavelet in 
the n-dimensional space. It is reasonable to assume that 
the wavelets will only need a small number of those 
orientations to accurately approximate the input data. A 
clever way is needed to determine which orientations are 
necessary. This will reduce the size of the network and 
make it much more efficient. 
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• Non-separable Wavelets. These wavelets deal with the same 
problem discussed above, wavelet modes.  In this thesis we 
used separable wavelets, meaning that they were built using 
the tensor products of one-dimensional wavelets [8, 14]. 
Non-separable wavelets eliminate the need for wavelet modes 
altogether. These wavelets are more complex than the ones 
used in this thesis, but in multi-dimensional space they 
save T-l  coefficients per wavelet. 

• Encoding of Frequency Data. A better way to encode 
frequency data must be found.  In high dimensional networks 
the amount of frequency data that must be kept becomes very 
large. Currently we encode the information as bits, 
limiting the amount of information able to be kept for each 
wavelet to the maximum integer size of the machine. On our 
platform this limits the allowable input dimension to 5. 
One possible way to encode the data is to use an additional 
n-dimensional matrix for each wavelet unit, but this_ 
becomes a storage concern. The use of Huffman encoding or 
a similar, more efficient way to represent bits would be a 
better choice. 

6.2.2 Non-Stationary and Adverse Data 

• Removal of wavelets.  In the case of changing, or non- 
stationary data there may come a time when wavelets that 
were once necessary for the approximation are no longer 
needed.  Our algorithm has no means, save pruning, to 
remove wavelets intelligently. One easy option is to 
remove the top resolution levels at various times, forcing 
the algorithm to grow according to the new data. However, 
wavelets that are still useful will be removed this way, 
significantly affecting performance. Another idea is to 
keep track of the last time a wavelet basis function was 
hit by data, and prune according to this value. A good 
basis function removal heuristic would increase the 
applicability of our algorithm. 

• improved aae weighting. The RLS age weighting discussed in 
section 2.3.3.1 allows us to use a discounted age weighting 
scheme in RLS. However, after a short time, this weighting 
converges to constant steady-state values.  In applications 
such as reinforcement learning, the new data must be 
weighted much more heavily than older data since it 
contains better information. A better weighting scheme 
could allow this algorithm and RLS to be much more amenable 
to reinforcement learning applications. 

• improved inactive wavelets.  Inactive wavelets are useful 
for implementing the spirit of this algorithm which is to 
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place the correct size wavelet for the given data. 
Unfortunately, our multiresolution structure and the data 
that we need to keep for each wavelet only allows us to 
skip one resolution at a time (placing a unit a quarter of 
the size of the currently smallest wavelet). A better 
algorithm would allow any size wavelet to be placed above 
the current wavelet. However, this becomes a problem if 
more data arrives later, necessitating a larger wavelet 
which could make the previous addition of the smaller 
wavelet superfluous. A wavelet removal algorithm could be 
used in conjunction to prevent this problem.. 
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Appendix A    Least Squares  and the 
Discrete Wavelet Transform 

The purpose of this appendix is to show mathematically 
that the Discrete Wavelet Transform is equivalent to Least 
Squares under these conditions: 

Assumptions: 
• Orthonormal basis (n basis functions) 
• The Basis is covered by data that is finite, 

discrete, sufficiently dense and uniformly 
distributed (k data points) 

• Training examples are supervised, i.e., an 
example looks like (zjf bd), where zi = j'-th input 
and bj = j-th target value 

Using Equation 2.3 from Section 2.1.1, the Continuous Wavelet 
Transform for an orthonormal basis is: 

x' = \a\z) b (z) dz (A.l) 

where 
ai(z)  is the i-th basis function 

b(z)  is the target function 

x1 is the coefficient of the i-th wavelet 

Since we are using discrete data, Equation A.l must be 
modified to give us the Discrete Wavelet Transform, 
which takes the form 

where 
K[ is a normalization factor necessary to account for 

the loss of normality during sampling of the basis 
function a!(z) 
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Equation A.2 can also be written in vector form: 

x[ = KH)Ttk (A-3) 

where 
a[  is Basis Function Vector such that 

a'k=[a'(Zl)   a\z2)   -   a'(zk)f 

hk is  the Data Vector for data point k such that 

£* = [*.(*.) hizi) - bk(Zk)f 

2£k   is the Coefficient Vector for n  basis functions 
after k data points such thatxt=[xj x\   ••• xn

k\ 

It is now necessary to determine what K[  will be in 
Equation A.3 

Example: Assume data (hk)   falls exactly on basis function 
(a'k), i.e., they are equivalent.  In this case, we 
would like to normalize Equation A.3 such that the 
coefficient x[  evaluates exactly to 1: 

xi
k = K(a'k)

Tbk = K(ai
k)

Tak = l   -* ^ = 77^"      <A'4> 

J\Ti 1 _(akrh 
(sifsl 4==hrt <A-5> 

For Least Squares we want to find the solution, x, to the 
system such that |Ax-fc| is minimized.  For an 
overdetermined system, the solution is: 

xk=(Ak
TAky

lAk
Tbk (A. 6) 

where 

Ak is the Basis Function Matrix such that ^4^= fa}.   a\   •••   aj] 

146 



If we expand Equation A.6,  we get: 

(£f~ 

At At— 

n\T K) 

[si & - «*] = (A.7) 

From Section 2.1.2,   Equation 2.5 we see that-if  a£  and a9
k 

are orthogonal,   then: 

(äkfäl = °     for P*2 (A.8) 

(i.e., orthogonal basis functions have inner products that 
are zero). 

Using Equation A.8 with Equation A.7 gives us: 

At At 

(sD'si o 

0 (alfal 

Equation A.9 is now very easy to invert, becoming: 
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(VAO-1 = 
o 

o 

l 

(&)   «* 

(A.9) 

(A.10) 

Plugging Equation A.10 into Equation A.6 gives us: 
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(A. 11) 
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From Equation A.11 we can now decouple the coefficients 
for individual, orthogonal basis units: 

Equation A. 12, the Least Squares solution, is identical to 
Equation A.5, the Discrete Wavelet Transform Solution! 
Therefore, Least Squares =   Discrete Wavelet 
Transform under our assumptions. 
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